import collections import time from copy import copy import logging import pandas import numpy from sklearn.base import clone from sklearn.model_selection import StratifiedKFold from sklearn.linear_model import LogisticRegression from ..common import assert_no_null, drop_nulls_and_warn def build_presentation_models(term_dict, formulas, **kwargs): """ Convenience function for creating multiple final models based on shared terms. Parameters ------------ term_dict : dict of string -> ( list of PresentationComponentModel, list of string) Terms are named with arbitrary strings (e.g. "A_ms") and are associated with some presentation component models and some expressions (e.g. ["log(affinity_percentile_rank + .001)"]). formulas : list of string A formula is a string containing terms separated by "+". For example: "A_ms + A_cleavage + A_expression". **kwargs : dict Passed to PresentationModel constructor Returns ------------ dict of string -> PresentationModel The keys of the result dict are formulas, and the values are (untrained) PresentationModel instances. """ result = collections.OrderedDict() for formula in formulas: term_names = [x.strip() for x in formula.split("+")] inputs = [] expressions = [] for name in term_names: (term_inputs, term_expressions) = term_dict[name] inputs.extend(term_inputs) expressions.extend(term_expressions) assert len(set(expressions)) == len(expressions), expressions presentation_model = PresentationModel( inputs, expressions, **kwargs) result[formula] = presentation_model return result class PresentationModel(object): """ A predictor for whether a peptide is detected via mass-spec. Uses "final model inputs" (e.g. expression, cleavage, mhc affinity) which themselves may need to be fit. Parameters ------------ component_models : list of PresentationComponentModel feature_expressions : list of string Expressions to use to generate features for the final model based on the columns generated by the final model inputs. Example: ["log(expression + .01)"] decoy_strategy : DecoyStrategy Decoy strategy to use for training the final model. (The final model inputs handle their own decoys.) random-state : int Random state to use for picking cross validation folds. We are careful to be deterministic here (i.e. same folds used if the random state is the same) because we want to have cache hits for final model inputs that are being used more than once in multiple final models fit to the same data. ensemble_size : int If specified, train an ensemble of each final model input, and use the out-of-bag predictors to generate predictions to fit the final model. If not specified (default), a two-fold fit is used. """ def __init__( self, component_models, feature_expressions, decoy_strategy, predictor=LogisticRegression(), random_state=0, ensemble_size=None): columns = set() self.component_models_require_fitting = False for component_model in component_models: model_cols = component_model.column_names() assert not columns.intersection(model_cols), model_cols columns.update(model_cols) if component_model.requires_fitting(): self.component_models_require_fitting = True self.component_models = component_models self.ensemble_size = ensemble_size self.feature_expressions = feature_expressions self.decoy_strategy = decoy_strategy self.random_state = random_state self.predictor = predictor self.trained_component_models = None self.presentation_models_predictors = None self.fit_experiments = None @property def has_been_fit(self): return self.fit_experiments is not None def clone(self): return copy(self) def reset_cache(self): for model in self.component_models: model.reset_cache() if self.trained_component_models is not None: for models in self.trained_component_models: for ensemble_group in models: for model in ensemble_group: model.reset_cache() def fit(self, hits_df): """ Train the final model and its inputs (if necessary). Parameters ----------- hits_df : pandas.DataFrame dataframe of hits with columns 'experiment_name' and 'peptide' """ start = time.time() assert not self.has_been_fit assert 'experiment_name' in hits_df.columns assert 'peptide' in hits_df.columns assert self.trained_component_models is None assert self.presentation_models_predictors is None hits_df = hits_df.reset_index(drop=True).copy() self.fit_experiments = set(hits_df.experiment_name.unique()) if self.component_models_require_fitting and not self.ensemble_size: # Use two fold CV to train model inputs then final models. # In this strategy, we fit the component models on half the data, # and train the final predictor (usually logistic regression) on # the other half. We do this twice to end up with two final. # At prediction time, the results of these predictors are averaged. cv = StratifiedKFold( n_splits=2, shuffle=True, random_state=self.random_state) self.trained_component_models = [] self.presentation_models_predictors = [] fold_num = 1 for (fold1, fold2) in cv.split(hits_df, hits_df.experiment_name): print("Two fold fit: fitting fold %d" % fold_num) fold_num += 1 assert len(fold1) > 0 assert len(fold2) > 0 model_input_training_hits_df = hits_df.iloc[fold1] hits_and_decoys_df = make_hits_and_decoys_df( hits_df.iloc[fold2], self.decoy_strategy) self.trained_component_models.append([]) for sub_model in self.component_models: sub_model = sub_model.clone_and_fit( model_input_training_hits_df) self.trained_component_models[-1].append((sub_model,)) predictions = sub_model.predict(hits_and_decoys_df) for (col, values) in predictions.items(): hits_and_decoys_df[col] = values final_predictor = self.fit_final_predictor(hits_and_decoys_df) self.presentation_models_predictors.append(final_predictor) else: # Use an ensemble of component predictors. Each component model is # trained on a random half of the data (self.ensemble_size folds # in total). Predictions are generated using the out of bag # predictors. A single final model predictor is trained. if self.component_models_require_fitting: print("Using ensemble fit, ensemble size: %d" % ( self.ensemble_size)) else: print("Using single fold fit.") component_model_index_to_stratification_groups = [] stratification_groups_to_ensemble_folds = {} for (i, component_model) in enumerate(self.component_models): if component_model.requires_fitting(): stratification_groups = tuple( component_model.stratification_groups(hits_df)) component_model_index_to_stratification_groups.append( stratification_groups) stratification_groups_to_ensemble_folds[ stratification_groups ] = [] for (i, (stratification_groups, ensemble_folds)) in enumerate( stratification_groups_to_ensemble_folds.items()): print("Preparing folds for stratification group %d / %d" % ( i + 1, len(stratification_groups_to_ensemble_folds))) while len(ensemble_folds) < self.ensemble_size: cv = StratifiedKFold( n_splits=2, shuffle=True, random_state=self.random_state + len(ensemble_folds)) for (indices, _) in cv.split( hits_df, stratification_groups): ensemble_folds.append(indices) # We may have one extra fold. if len(ensemble_folds) == self.ensemble_size + 1: ensemble_folds.pop() def fit_and_predict_component(model, fit_df, predict_df): assert component_model.requires_fitting() model = component_model.clone_and_fit(fit_df) predictions = model.predict(predict_df) return (model, predictions) # Note: we depend on hits coming before decoys here, so that # indices into hits_df are also indices into hits_and_decoys_df. hits_and_decoys_df = make_hits_and_decoys_df( hits_df, self.decoy_strategy) self.trained_component_models = [[]] for (i, component_model) in enumerate(self.component_models): if component_model.requires_fitting(): print("Training component model %d / %d: %s" % ( i + 1, len(self.component_models), component_model)) stratification_groups = ( component_model_index_to_stratification_groups[i]) ensemble_folds = stratification_groups_to_ensemble_folds[ stratification_groups ] (models, predictions) = train_and_predict_ensemble( component_model, hits_and_decoys_df, ensemble_folds) else: models = (component_model,) predictions = component_model.predict(hits_and_decoys_df) self.trained_component_models[0].append(models) for (col, values) in predictions.items(): hits_and_decoys_df[col] = values final_predictor = self.fit_final_predictor(hits_and_decoys_df) self.presentation_models_predictors = [final_predictor] assert len(self.presentation_models_predictors) == \ len(self.trained_component_models) for models_group in self.trained_component_models: assert isinstance(models_group, list) assert len(models_group) == len(self.component_models) assert all( isinstance(ensemble_group, tuple) for ensemble_group in models_group) print("Fit final model in %0.1f sec." % (time.time() - start)) # Decoy strategy is no longer required after fitting. self.decoy_strategy = None def fit_final_predictor( self, hits_and_decoys_with_component_predictions_df): """ Private helper method. """ (x, y) = self.make_features_and_target( hits_and_decoys_with_component_predictions_df) print("Training final model predictor on data of shape %s" % ( str(x.shape))) final_predictor = clone(self.predictor) final_predictor.fit(x.values, y.values) return final_predictor def evaluate_expressions(self, input_df): result = pandas.DataFrame() for expression in self.feature_expressions: # We use numpy module as globals here so math functions # like log, log1p, exp, are in scope. try: values = eval(expression, numpy.__dict__, input_df) except SyntaxError: logging.error("Syntax error in expression: %s" % expression) raise assert len(values) == len(input_df), expression if hasattr(values, 'values'): values = values.values series = pandas.Series(values) assert_no_null(series, expression) result[expression] = series assert len(result) == len(input_df) return result def make_features_and_target(self, hits_and_decoys_df): """ Private helper method. """ assert 'peptide' in hits_and_decoys_df assert 'hit' in hits_and_decoys_df df = self.evaluate_expressions(hits_and_decoys_df) df['hit'] = hits_and_decoys_df.hit.values new_df = drop_nulls_and_warn(df, hits_and_decoys_df) y = new_df["hit"] del new_df["hit"] return (new_df, y) def predict_to_df(self, peptides_df): """ Predict for the given peptides_df, which should have columns 'experiment_name' and 'peptide'. Returns a dataframe giving the predictions. If this final model's inputs required fitting and therefore the final model has two predictors trained each fold, the resulting dataframe will have predictions for both final model predictors. """ assert self.has_been_fit assert 'experiment_name' in peptides_df.columns assert 'peptide' in peptides_df.columns assert len(self.presentation_models_predictors) == \ len(self.trained_component_models) prediction_cols = [] presentation_model_predictions = {} zipped = enumerate( zip( self.trained_component_models, self.presentation_models_predictors)) for (i, (component_models, presentation_model_predictor)) in zipped: df = pandas.DataFrame() for ensemble_models in component_models: start_t = time.time() predictions = ensemble_predictions( ensemble_models, peptides_df) print( "Component '%s' (ensemble size=%d) generated %d " "predictions in %0.2f sec." % ( ensemble_models[0], len(ensemble_models), len(peptides_df), (time.time() - start_t))) for (col, values) in predictions.items(): values = pandas.Series(values) assert_no_null(values) df[col] = values x_df = self.evaluate_expressions(df) assert_no_null(x_df) prediction_col = "Prediction (Model %d)" % (i + 1) assert prediction_col not in presentation_model_predictions presentation_model_predictions[prediction_col] = ( presentation_model_predictor .predict_proba(x_df.values)[:, 1]) prediction_cols.append(prediction_col) if len(prediction_cols) == 1: presentation_model_predictions["Prediction"] = ( presentation_model_predictions[prediction_cols[0]]) del presentation_model_predictions[prediction_cols[0]] else: presentation_model_predictions["Prediction"] = numpy.mean( [ presentation_model_predictions[col] for col in prediction_cols ], axis=0) return pandas.DataFrame(presentation_model_predictions) def predict(self, peptides_df): """ Predict for the given peptides_df, which should have columns 'experiment_name' and 'peptide'. Returns an array of floats giving the predictions for each row in peptides_df. If the final model was trained in two folds, the predictions from the two final model predictors are averaged. """ assert self.has_been_fit df = self.predict_to_df(peptides_df) return df.Prediction.values def score_from_peptides_df( self, peptides_df, include_hit_indices=True): """ Given a DataFrame with columns 'peptide', 'experiment_name', and 'hit', calculate the PPV score. Return a dict of scoring info. If include_hit_indices is True (default), then the indices the hits occur in after sorting by prediction score, is also returned. The top predicted peptide will have index 0. """ assert self.has_been_fit assert 'peptide' in peptides_df.columns assert 'experiment_name' in peptides_df.columns assert 'hit' in peptides_df.columns peptides_df = peptides_df.copy() peptides_df["prediction"] = self.predict(peptides_df) top_n = float(peptides_df.hit.sum()) if not include_hit_indices: top = peptides_df.nlargest(top_n, "prediction") result = { 'score': top.hit.mean() } else: ranks = peptides_df.prediction.rank(ascending=False) hit_indices = ranks[peptides_df.hit > 0].values hit_lengths = peptides_df.peptide[ peptides_df.hit > 0 ].str.len().values result = { 'hit_indices': hit_indices, 'hit_lengths': hit_lengths, 'total_peptides': len(peptides_df), } result['score'] = ( numpy.sum(result['hit_indices'] <= top_n) / top_n) return result def score_from_hits_and_decoy_strategy(self, hits_df, decoy_strategy): """ Compute positive predictive value on the given hits_df. Parameters ----------- hits_df : pandas.DataFrame dataframe of hits with columns 'experiment_name' and 'peptide' decoy_strategy : DecoyStrategy Strategy for selecting decoys Returns ----------- dict of scoring info, with keys 'score', 'hit_indices', and 'total_peptides' """ assert self.has_been_fit peptides_df = make_hits_and_decoys_df( hits_df, decoy_strategy) return self.score_from_peptides_df(peptides_df) def get_fit(self): """ Return fit (i.e. trained) parameters. """ assert self.has_been_fit result = { 'trained_component_model_fits': [], 'presentation_models_predictors': ( self.presentation_models_predictors), 'fit_experiments': self.fit_experiments, 'feature_expressions': self.feature_expressions, } for final_predictor_models_group in self.trained_component_models: fits = [] for ensemble_group in final_predictor_models_group: fits.append(tuple(model.get_fit() for model in ensemble_group)) result['trained_component_model_fits'].append(fits) return result def restore_fit(self, fit): """ Restore fit parameters. Parameters ------------ fit : object What was returned from a call to get_fit(). """ assert not self.has_been_fit fit = dict(fit) self.presentation_models_predictors = ( fit.pop('presentation_models_predictors')) self.fit_experiments = fit.pop('fit_experiments') model_input_fits = fit.pop('trained_component_model_fits') feature_expressions = fit.pop('feature_expressions', []) if feature_expressions != self.feature_expressions: logging.warn( "Feature expressions restored from fit: '%s' do not match " "those of this PresentationModel: '%s'" % ( feature_expressions, self.feature_expressions)) assert not fit, "Unhandled data in fit: %s" % fit assert ( len(model_input_fits) == len(self.presentation_models_predictors)) self.trained_component_models = [] for model_input_fits_for_fold in model_input_fits: self.trained_component_models.append([]) for (sub_model, sub_model_fits) in zip( self.component_models, model_input_fits_for_fold): restored_models = tuple( sub_model.clone_and_restore_fit(sub_model_fit) for sub_model_fit in sub_model_fits) self.trained_component_models[-1].append(restored_models) def make_hits_and_decoys_df(hits_df, decoy_strategy): """ Given some hits (with columns 'experiment_name' and 'peptide'), and a decoy strategy, return a "peptides_df", which has columns 'experiment_name', 'peptide', and 'hit.' """ hits_df = hits_df.copy() hits_df["hit"] = 1 decoys_df = decoy_strategy.decoys(hits_df) decoys_df["hit"] = 0 peptides_df = pandas.concat( [hits_df, decoys_df], ignore_index=True) return peptides_df # TODO: paralellize this. def train_and_predict_ensemble(model, peptides_df, ensemble_folds): assert model.requires_fitting() fit_models = tuple( model.clone_and_fit(peptides_df.iloc[indices]) for indices in ensemble_folds) return ( fit_models, ensemble_predictions(fit_models, peptides_df, ensemble_folds)) def ensemble_predictions(models, peptides_df, mask_indices_list=None): typical_model = models[0] panel = pandas.Panel( items=numpy.arange(len(models)), major_axis=peptides_df.index, minor_axis=typical_model.column_names(), dtype=numpy.float32) for (i, model) in enumerate(models): predictions = model.predict(peptides_df) for (key, values) in predictions.items(): panel.loc[i, :, key] = values if mask_indices_list is not None: for (i, indices) in enumerate(mask_indices_list): panel.iloc[i, indices] = numpy.nan result = {} for col in typical_model.column_names(): values = panel.ix[:, :, col] assert values.shape == (len(peptides_df), len(models)) result[col] = model.combine_ensemble_predictions(col, values.values) assert_no_null(result[col]) return result