from __future__ import print_function from os.path import join, exists from os import mkdir from socket import gethostname from getpass import getuser import time import collections import logging from six import string_types import numpy import pandas import sklearn import sklearn.linear_model try: import tqdm except ImportError: tdqm = None from .version import __version__ from .class1_affinity_predictor import Class1AffinityPredictor from .class1_processing_predictor import Class1ProcessingPredictor from .class1_neural_network import DEFAULT_PREDICT_BATCH_SIZE from .encodable_sequences import EncodableSequences from .regression_target import from_ic50, to_ic50 from .downloads import get_default_class1_presentation_models_dir MAX_ALLELES_PER_SAMPLE = 6 PREDICT_BATCH_SIZE = DEFAULT_PREDICT_BATCH_SIZE PREDICT_CHUNK_SIZE = 100000 # currently used only for cleavage prediction class Class1PresentationPredictor(object): """ A logistic regression model over predicted binding affinity (BA) and antigen processing (AP) score. Instances of this class delegate to Class1AffinityPredictor and Class1ProcessingPredictor instances to generate BA and AP predictions. These predictions are combined using a logistic regression model to give a "presentation score" prediction. Most users will call the `load` static method to get an instance of this class, then call the `predict_to_dataframe` method to generate predictions. """ model_inputs = ["affinity_score", "processing_score"] def __init__( self, affinity_predictor=None, processing_predictor_with_flanks=None, processing_predictor_without_flanks=None, weights_dataframe=None, metadata_dataframes=None): self.affinity_predictor = affinity_predictor self.processing_predictor_with_flanks = processing_predictor_with_flanks self.processing_predictor_without_flanks = processing_predictor_without_flanks self.weights_dataframe = weights_dataframe self.metadata_dataframes = ( dict(metadata_dataframes) if metadata_dataframes else {}) self._models_cache = {} @property def supported_alleles(self): """ List of alleles supported by the underlying Class1AffinityPredictor """ return self.affinity_predictor.supported_alleles @property def supported_peptide_lengths(self): """ (min, max) of supported peptide lengths, inclusive. """ return self.affinity_predictor.supported_peptide_lengths def predict_affinity( self, peptides, alleles, sample_names=None, include_affinity_percentile=False, verbose=1, throw=True): """ Predict binding affinities across samples (each corresponding to up to six MHC I alleles). Two modes are supported: each peptide can be evaluated for binding to any of the alleles in any sample (this is what happens when sample_names is None), or the i'th peptide can be evaluated for binding the alleles of the sample given by the i'th entry in sample_names. For example, if we don't specify sample_names, then predictions are taken for all combinations of samples and peptides, for a result size of num peptides * num samples: >>> predictor = Class1PresentationPredictor.load() >>> predictor.predict_affinity( ... peptides=["SIINFEKL", "PEPTIDE"], ... alleles={ ... "sample1": ["A0201", "A0301", "B0702"], ... "sample2": ["A0101", "C0202"], ... }, ... verbose=0) peptide peptide_num sample_name affinity best_allele 0 SIINFEKL 0 sample1 12906.787792 A0201 1 PEPTIDE 1 sample1 36827.681130 B0702 2 SIINFEKL 0 sample2 3588.413748 C0202 3 PEPTIDE 1 sample2 34362.109211 C0202 In contrast, here we specify sample_names, so peptide is evaluated for binding the alleles in the corresponding sample, for a result size equal to the number of peptides: >>> predictor.predict_affinity( ... peptides=["SIINFEKL", "PEPTIDE"], ... alleles={ ... "sample1": ["A0201", "A0301", "B0702"], ... "sample2": ["A0101", "C0202"], ... }, ... sample_names=["sample2", "sample1"], ... verbose=0) peptide peptide_num sample_name affinity best_allele 0 SIINFEKL 0 sample2 3588.412141 C0202 1 PEPTIDE 1 sample1 36827.682779 B0702 Parameters ---------- peptides : list of string Peptide sequences alleles : dict of string -> list of string Keys are sample names, values are the alleles (genotype) for that sample sample_names : list of string [same length as peptides] Sample names corresponding to each peptide. If None, then predictions are generated for all sample genotypes across all peptides. include_affinity_percentile : bool Whether to include affinity percentile ranks verbose : int Set to 0 for quiet. throw : verbose Whether to throw exception (vs. just log a warning) on invalid peptides, etc. Returns ------- pandas.DataFrame : predictions """ df = pandas.DataFrame({ "peptide": numpy.array(peptides, copy=False), }) df["peptide_num"] = df.index if sample_names is None: peptides = EncodableSequences.create(peptides) all_alleles = set() for lst in alleles.values(): all_alleles.update(lst) iterator = sorted(all_alleles) if verbose > 0: print("Predicting affinities.") if tqdm is not None: iterator = tqdm.tqdm(iterator, total=len(all_alleles)) predictions_df = pandas.DataFrame(index=df.index) for allele in iterator: predictions_df[allele] = self.affinity_predictor.predict( peptides=peptides, allele=allele, model_kwargs={'batch_size': PREDICT_BATCH_SIZE}, throw=throw) dfs = [] for (sample_name, sample_alleles) in alleles.items(): new_df = df.copy() new_df["sample_name"] = sample_name new_df["affinity"] = predictions_df[ sample_alleles ].min(1).values if len(df) == 0: new_df["best_allele"] = [] else: new_df["best_allele"] = predictions_df[ sample_alleles ].idxmin(1).values dfs.append(new_df) result_df = pandas.concat(dfs, ignore_index=True) else: df["sample_name"] = numpy.array(sample_names, copy=False) iterator = df.groupby("sample_name") if verbose > 0: print("Predicting affinities.") if tqdm is not None: iterator = tqdm.tqdm( iterator, total=df.sample_name.nunique()) for (sample, sub_df) in iterator: predictions_df = pandas.DataFrame(index=sub_df.index) sample_peptides = EncodableSequences.create(sub_df.peptide.values) for allele in alleles[sample]: predictions_df[allele] = self.affinity_predictor.predict( peptides=sample_peptides, allele=allele, model_kwargs={'batch_size': PREDICT_BATCH_SIZE}, throw=throw) df.loc[ sub_df.index, "affinity" ] = predictions_df.min(1).values df.loc[ sub_df.index, "best_allele" ] = predictions_df.idxmin(1).values result_df = df if include_affinity_percentile: result_df["affinity_percentile"] = ( self.affinity_predictor.percentile_ranks( result_df.affinity.values, alleles=result_df.best_allele.values, throw=False)) return result_df def predict_processing( self, peptides, n_flanks=None, c_flanks=None, verbose=1): """ Predict antigen processing scores for individual peptides, optionally including flanking sequences for better cleavage prediction. Parameters ---------- peptides : list of string n_flanks : list of string [same length as peptides] c_flanks : list of string [same length as peptides] verbose : int Returns ------- numpy.array : Antigen processing scores for each peptide """ if (n_flanks is None) != (c_flanks is None): raise ValueError("Specify both or neither of n_flanks, c_flanks") if n_flanks is None: if self.processing_predictor_without_flanks is None: raise ValueError("No processing predictor without flanks") predictor = self.processing_predictor_without_flanks n_flanks = [""] * len(peptides) c_flanks = n_flanks else: if self.processing_predictor_with_flanks is None: raise ValueError("No processing predictor with flanks") predictor = self.processing_predictor_with_flanks if len(peptides) == 0: return numpy.array([], dtype=float) num_chunks = int(numpy.ceil(float(len(peptides)) / PREDICT_CHUNK_SIZE)) peptide_chunks = numpy.array_split(peptides, num_chunks) n_flank_chunks = numpy.array_split(n_flanks, num_chunks) c_flank_chunks = numpy.array_split(c_flanks, num_chunks) iterator = zip(peptide_chunks, n_flank_chunks, c_flank_chunks) if verbose > 0: print("Predicting processing.") if tqdm is not None: iterator = tqdm.tqdm(iterator, total=len(peptide_chunks)) result_chunks = [] for (peptide_chunk, n_flank_chunk, c_flank_chunk) in iterator: result_chunk = predictor.predict( peptides=peptide_chunk, n_flanks=n_flank_chunk, c_flanks=c_flank_chunk, batch_size=PREDICT_BATCH_SIZE) result_chunks.append(result_chunk) return numpy.concatenate(result_chunks) def fit( self, targets, peptides, sample_names, alleles, n_flanks=None, c_flanks=None, verbose=1): """ Fit the presentation score logistic regression model. Parameters ---------- targets : list of int/float 1 indicates hit, 0 indicates decoy peptides : list of string [same length as targets] sample_names : list of string [same length as targets] alleles : dict of string -> list of string Keys are sample names, values are the alleles for that sample n_flanks : list of string [same length as targets] c_flanks : list of string [same length as targets] verbose : int """ df = self.predict_affinity( peptides=peptides, alleles=alleles, sample_names=sample_names, verbose=verbose) df["affinity_score"] = from_ic50(df.affinity) df["target"] = numpy.array(targets, copy=False) if (n_flanks is None) != (c_flanks is None): raise ValueError("Specify both or neither of n_flanks, c_flanks") with_flanks_list = [] if self.processing_predictor_without_flanks is not None: with_flanks_list.append(False) if n_flanks is not None and self.processing_predictor_with_flanks is not None: with_flanks_list.append(True) if not with_flanks_list: raise RuntimeError("Can't fit any models") if self.weights_dataframe is None: self.weights_dataframe = pandas.DataFrame() for with_flanks in with_flanks_list: model_name = 'with_flanks' if with_flanks else "without_flanks" if verbose > 0: print("Training variant", model_name) df["processing_score"] = self.predict_processing( peptides=df.peptide.values, n_flanks=n_flanks if with_flanks else None, c_flanks=c_flanks if with_flanks else None, verbose=verbose) model = self.get_model() if verbose > 0: print("Fitting LR model.") print(df) model.fit( X=df[self.model_inputs].values, y=df.target.astype(float)) self.weights_dataframe.loc[model_name, "intercept"] = model.intercept_ for (name, value) in zip(self.model_inputs, numpy.squeeze(model.coef_)): self.weights_dataframe.loc[model_name, name] = value self._models_cache[model_name] = model def get_model(self, name=None): """ Load or instantiate a new logistic regression model. Private helper method. Parameters ---------- name : string If None (the default), an un-fit LR model is returned. Otherwise the weights are loaded for the specified model. Returns ------- sklearn.linear_model.LogisticRegression """ if name is None or name not in self._models_cache: model = sklearn.linear_model.LogisticRegression(solver="lbfgs") if name is not None: row = self.weights_dataframe.loc[name] model.intercept_ = row.intercept model.coef_ = numpy.expand_dims( row[self.model_inputs].values, axis=0) model.classes_ = numpy.array([0, 1]) else: model = self._models_cache[name] return model def predict( self, peptides, alleles, sample_names=None, n_flanks=None, c_flanks=None, verbose=1): """ Predict presentation scores across a set of peptides. Presentation scores combine predictions for MHC I binding affinity and antigen processing. For intermediate results, see the `predict_to_dataframe` method. Parameters ---------- peptides : list of string Peptide sequences alleles : list of string or string -> string dict If you are predicting for a single sample, pass a list of strings (up to 6) indicating the genotype. If you are predicting across multiple samples, pass a dict where the keys are (arbitrary) sample names and the values are the alleles to predict for that sample. sample_names : list of string [same length as peptides] If you are passing a dict for 'alleles', use this argument to specify which peptides go with which sample. n_flanks : list of string [same length as peptides] Upstream sequences before the peptide. Sequences of any length can be given and a suffix of the size supported by the model will be used. c_flanks : list of string [same length as peptides] Downstream sequences after the peptide. Sequences of any length can be given and a prefix of the size supported by the model will be used. verbose : int Set to 0 for quiet mode. Returns ------- numpy.array Presentation scores for each peptide. Scores range from 0 to 1, with higher values indicating more favorable presentation likelihood. """ if isinstance(alleles, dict): if sample_names is None: raise ValueError( "sample_names must be supplied when alleles is a dict. " "Alternatively, call predict_to_dataframe to predict over " "all samples") return self.predict_to_dataframe( peptides=peptides, alleles=alleles, sample_names=sample_names, n_flanks=n_flanks, c_flanks=c_flanks, verbose=verbose).presentation_score.values def predict_to_dataframe( self, peptides, alleles, sample_names=None, n_flanks=None, c_flanks=None, include_affinity_percentile=False, verbose=1, throw=True): """ Predict presentation scores across a set of peptides. Presentation scores combine predictions for MHC I binding affinity and antigen processing. This method returns a pandas.DataFrame giving presentation scores plus the binding affinity and processing predictions and other intermediate results. Example: >>> predictor = Class1PresentationPredictor.load() >>> predictor.predict_to_dataframe( ... peptides=["SIINFEKL", "PEPTIDE"], ... n_flanks=["NNN", "SNS"], ... c_flanks=["CCC", "CNC"], ... alleles={ ... "sample1": ["A0201", "A0301", "B0702"], ... "sample2": ["A0101", "C0202"], ... }, ... verbose=0) peptide n_flank c_flank peptide_num sample_name affinity best_allele processing_score presentation_score 0 SIINFEKL NNN CCC 0 sample1 12906.787792 A0201 0.802466 0.140365 1 PEPTIDE SNS CNC 1 sample1 36827.681130 B0702 0.105260 0.004059 2 SIINFEKL NNN CCC 0 sample2 3588.413748 C0202 0.802466 0.338647 3 PEPTIDE SNS CNC 1 sample2 34362.109211 C0202 0.105260 0.004317 You can also specify sample_names, in which case peptide is evaluated for binding the alleles in the corresponding sample only. See `predict_affinity` for an examples. Parameters ---------- peptides : list of string Peptide sequences alleles : list of string or dict of string -> list of string If you are predicting for a single sample, pass a list of strings (up to 6) indicating the genotype. If you are predicting across multiple samples, pass a dict where the keys are (arbitrary) sample names and the values are the alleles to predict for that sample. sample_names : list of string [same length as peptides] If you are passing a dict for 'alleles', you can use this argument to specify which peptides go with which samples. If it is None, then predictions will be performed for each peptide across all samples. n_flanks : list of string [same length as peptides] Upstream sequences before the peptide. Sequences of any length can be given and a suffix of the size supported by the model will be used. c_flanks : list of string [same length as peptides] Downstream sequences after the peptide. Sequences of any length can be given and a prefix of the size supported by the model will be used. include_affinity_percentile : bool Whether to include affinity percentile ranks verbose : int Set to 0 for quiet. throw : verbose Whether to throw exception (vs. just log a warning) on invalid peptides, etc. Returns ------- pandas.DataFrame Presentation scores and intermediate results. """ if isinstance(peptides, string_types): raise TypeError("peptides must be a list not a string") if isinstance(alleles, string_types): raise TypeError("alleles must be a list or dict") if not isinstance(alleles, dict): # Make alleles into a dict. if sample_names is not None: raise ValueError( "alleles must be a dict when sample_names is specified") alleles = numpy.array(alleles, copy=False) if len(alleles) > MAX_ALLELES_PER_SAMPLE: raise ValueError( "When alleles is a list, it must have at most %d elements. " "These alleles are taken to be a genotype for an " "individual, and the strongest prediction across alleles " "will be taken for each peptide. Note that this differs " "from Class1AffinityPredictor.predict(), where alleles " "is expected to be the same length as peptides." % MAX_ALLELES_PER_SAMPLE) alleles = { "sample1": alleles, } if (n_flanks is None) != (c_flanks is None): raise ValueError("Specify both or neither of n_flanks, c_flanks") processing_scores = self.predict_processing( peptides=peptides, n_flanks=n_flanks, c_flanks=c_flanks, verbose=verbose) df = self.predict_affinity( peptides=peptides, alleles=alleles, sample_names=sample_names, # might be None include_affinity_percentile=include_affinity_percentile, verbose=verbose, throw=throw) df["affinity_score"] = from_ic50(df.affinity) df["processing_score"] = df.peptide_num.map( pandas.Series(processing_scores)) if c_flanks is not None: df.insert(1, "c_flank", df.peptide_num.map(pandas.Series(c_flanks))) if n_flanks is not None: df.insert(1, "n_flank", df.peptide_num.map(pandas.Series(n_flanks))) model_name = 'with_flanks' if n_flanks is not None else "without_flanks" model = self.get_model(model_name) if len(df) > 0: df["presentation_score"] = model.predict_proba( df[self.model_inputs].values)[:,1] else: df["presentation_score"] = [] del df["affinity_score"] return df def predict_sequences( self, sequences, alleles, result="best", comparison_quantity="presentation_score", filter_value=None, peptide_lengths=(8, 9, 10, 11), use_flanks=True, include_affinity_percentile=True, verbose=1, throw=True): """ Predict presentation across protein sequences. Example: >>> predictor = Class1PresentationPredictor.load() >>> predictor.predict_sequences( ... sequences={ ... 'protein1': "MDSKGSSQKGSRLLLLLVVSNLL", ... 'protein2': "SSLPTPEDKEQAQQTHH", ... }, ... alleles={ ... "sample1": ["A0201", "A0301", "B0702"], ... "sample2": ["A0101", "C0202"], ... }, ... result="filtered", ... comparison_quantity="affinity", ... filter_value=500, ... verbose=0) sequence_name pos peptide n_flank c_flank sample_name affinity best_allele affinity_percentile processing_score presentation_score 0 protein1 13 LLLLVVSNL MDSKGSSQKGSRL L sample1 38.206225 A0201 0.380125 0.017644 0.571060 1 protein1 14 LLLVVSNLL MDSKGSSQKGSRLL sample1 42.243472 A0201 0.420250 0.090984 0.619213 2 protein1 5 SSQKGSRLL MDSKG LLLVVSNLL sample2 66.749223 C0202 0.803375 0.383608 0.774468 3 protein1 6 SQKGSRLLL MDSKGS LLVVSNLL sample2 178.033474 C0202 1.820000 0.275019 0.482206 4 protein1 13 LLLLVVSNLL MDSKGSSQKGSRL sample1 202.208167 A0201 1.112500 0.058782 0.261320 5 protein1 12 LLLLLVVSNL MDSKGSSQKGSR L sample1 202.506582 A0201 1.112500 0.010025 0.225648 6 protein2 0 SSLPTPEDK EQAQQTHH sample1 335.529377 A0301 1.011750 0.010443 0.156798 7 protein2 0 SSLPTPEDK EQAQQTHH sample2 353.451759 C0202 2.674250 0.010443 0.150753 8 protein1 8 KGSRLLLLL MDSKGSSQ VVSNLL sample2 410.327286 C0202 2.887000 0.121374 0.194081 9 protein1 5 SSQKGSRL MDSKG LLLLVVSNLL sample2 477.285954 C0202 3.107375 0.111982 0.168572 Parameters ---------- sequences : str, list of string, or string -> string dict Protein sequences. If a dict is given, the keys are arbitrary ( e.g. protein names), and the values are the amino acid sequences. alleles : list of string, list of list of string, or dict of string -> list of string MHC I alleles. Can be: (1) a string (a single allele), (2) a list of strings (a single genotype), (3) a list of list of strings (multiple genotypes, where the total number of genotypes must equal the number of sequences), or (4) a dict giving multiple genotypes, which will each be run over the sequences. result : string Specify 'best' to return the strongest peptide for each sequence, 'all' to return predictions for all peptides, or 'filtered' to return predictions where the comparison_quantity is stronger (i.e (<) for affinity, (>) for scores) than filter_value. comparison_quantity : string One of "presentation_score", "processing_score", "affinity", or "affinity_percentile". Prediction to use to rank (if result is "best") or filter (if result is "filtered") results. filter_value : float Threshold value to use, only relevant when result is "filtered". If comparison_quantity is "affinity", then all results less than (i.e. tighter than) the specified nM affinity are retained. If it's "presentation_score" or "processing_score" then results greater than the indicated filter_value are retained. peptide_lengths : list of int Peptide lengths to predict for. use_flanks : bool Whether to include flanking sequences when running the AP predictor (for better cleavage prediction). include_affinity_percentile : bool Whether to include affinity percentile ranks in output. verbose : int Set to 0 for quiet mode. throw : boolean Whether to throw exceptions (vs. log warnings) on invalid inputs. Returns ------- pandas.DataFrame with columns: peptide, n_flank, c_flank, sequence_name, affinity, best_allele, processing_score, presentation_score """ if comparison_quantity is None: comparison_quantity = "presentation_score" processing_predictor = self.processing_predictor_with_flanks if not use_flanks or processing_predictor is None: processing_predictor = self.processing_predictor_without_flanks supported_sequence_lengths = processing_predictor.sequence_lengths n_flank_length = supported_sequence_lengths["n_flank"] c_flank_length = supported_sequence_lengths["c_flank"] sequence_names = [] n_flanks = [] if use_flanks else None c_flanks = [] if use_flanks else None peptides = [] if isinstance(sequences, string_types): sequences = [sequences] if not isinstance(sequences, dict): sequences = collections.OrderedDict( ("sequence_%04d" % (i + 1), sequence) for (i, sequence) in enumerate(sequences)) cross_product = True if isinstance(alleles, string_types): # Case (1) - alleles is a string alleles = [alleles] if isinstance(alleles, dict): if any([isinstance(v, string_types) for v in alleles.values()]): raise ValueError( "The values in the alleles dict must be lists, not strings") else: if all(isinstance(a, string_types) for a in alleles): # Case (2) - a simple list of alleles alleles = { 'sample1': alleles } else: # Case (3) - a list of lists alleles = collections.OrderedDict( ("genotype_%04d" % (i + 1), genotype) for (i, genotype) in enumerate(alleles)) cross_product = False if len(alleles) != len(sequences): raise ValueError( "When passing a list of lists for the alleles argument " "the length of the list (%d) must match the length of " "the sequences being predicted (%d)" % ( len(alleles), len(sequences))) if not isinstance(alleles, dict): raise ValueError("Invalid type for alleles: ", type(alleles)) sample_names = None if cross_product else [] genotype_names = list(alleles) position_in_sequence = [] for (i, (name, sequence)) in enumerate(sequences.items()): genotype_name = None if cross_product else genotype_names[i] if not isinstance(sequence, string_types): raise ValueError("Expected string, not %s (%s)" % ( sequence, type(sequence))) for peptide_start in range(len(sequence) - min(peptide_lengths) + 1): n_flank_start = max(0, peptide_start - n_flank_length) for peptide_length in peptide_lengths: peptide = sequence[ peptide_start: peptide_start + peptide_length ] if len(peptide) != peptide_length: continue c_flank_end = ( peptide_start + peptide_length + c_flank_length) sequence_names.append(name) position_in_sequence.append(peptide_start) if not cross_product: sample_names.append(genotype_name) peptides.append(peptide) if use_flanks: n_flanks.append( sequence[n_flank_start : peptide_start]) c_flanks.append( sequence[peptide_start + peptide_length : c_flank_end]) result_df = self.predict_to_dataframe( peptides=peptides, alleles=alleles, n_flanks=n_flanks, c_flanks=c_flanks, sample_names=sample_names, include_affinity_percentile=include_affinity_percentile, verbose=verbose, throw=throw) result_df.insert( 0, "sequence_name", result_df.peptide_num.map(pandas.Series(sequence_names))) result_df.insert( 1, "pos", result_df.peptide_num.map(pandas.Series(position_in_sequence))) del result_df["peptide_num"] comparison_is_score = comparison_quantity.endswith("score") result_df = result_df.sort_values( comparison_quantity, ascending=not comparison_is_score) if result == "best": result_df = result_df.drop_duplicates( ["sequence_name", "sample_name"], keep="first" ).sort_values("sequence_name") elif result == "filtered": if comparison_is_score: result_df = result_df.loc[ result_df[comparison_quantity] >= filter_value ] else: result_df = result_df.loc[ result_df[comparison_quantity] <= filter_value ] elif result == "all": pass else: raise ValueError( "Unknown result: %s. Valid choices are: best, filtered, all" % result) result_df = result_df.reset_index(drop=True) result_df = result_df.copy() return result_df def save(self, models_dir): """ Save the predictor to a directory on disk. If the directory does not exist it will be created. The wrapped Class1AffinityPredictor and Class1ProcessingPredictor instances are included in the saved data. Parameters ---------- models_dir : string Path to directory. It will be created if it doesn't exist. """ if self.weights_dataframe is None: raise RuntimeError("Can't save before fitting") if not exists(models_dir): mkdir(models_dir) # Save underlying predictors self.affinity_predictor.save(join(models_dir, "affinity_predictor")) if self.processing_predictor_with_flanks is not None: self.processing_predictor_with_flanks.save( join(models_dir, "processing_predictor_with_flanks")) if self.processing_predictor_without_flanks is not None: self.processing_predictor_without_flanks.save( join(models_dir, "processing_predictor_without_flanks")) # Save model coefficients. self.weights_dataframe.to_csv(join(models_dir, "weights.csv")) # Write "info.txt" info_path = join(models_dir, "info.txt") rows = [ ("trained on", time.asctime()), ("package ", "mhcflurry %s" % __version__), ("hostname ", gethostname()), ("user ", getuser()), ] pandas.DataFrame(rows).to_csv( info_path, sep="\t", header=False, index=False) if self.metadata_dataframes: for (name, df) in self.metadata_dataframes.items(): metadata_df_path = join(models_dir, "%s.csv.bz2" % name) df.to_csv(metadata_df_path, index=False, compression="bz2") @classmethod def load(cls, models_dir=None, max_models=None): """ Deserialize a predictor from a directory on disk. This will also load the wrapped Class1AffinityPredictor and Class1ProcessingPredictor instances. Parameters ---------- models_dir : string Path to directory. If unspecified the default downloaded models are used. max_models : int, optional Maximum number of affinity and processing (counted separately) models to load Returns ------- `Class1PresentationPredictor` instance """ if models_dir is None: models_dir = get_default_class1_presentation_models_dir() affinity_predictor = Class1AffinityPredictor.load( join(models_dir, "affinity_predictor"), max_models=max_models) processing_predictor_with_flanks = None if exists(join(models_dir, "processing_predictor_with_flanks")): processing_predictor_with_flanks = Class1ProcessingPredictor.load( join(models_dir, "processing_predictor_with_flanks"), max_models=max_models) else: logging.warning( "Presentation predictor is missing processing predictor: %s", join(models_dir, "processing_predictor_with_flanks")) processing_predictor_without_flanks = None if exists(join(models_dir, "processing_predictor_without_flanks")): processing_predictor_without_flanks = Class1ProcessingPredictor.load( join(models_dir, "processing_predictor_without_flanks"), max_models=max_models) else: logging.warning( "Presentation predictor is missing processing predictor: %s", join(models_dir, "processing_predictor_without_flanks")) weights_dataframe = pandas.read_csv( join(models_dir, "weights.csv"), index_col=0) result = cls( affinity_predictor=affinity_predictor, processing_predictor_with_flanks=processing_predictor_with_flanks, processing_predictor_without_flanks=processing_predictor_without_flanks, weights_dataframe=weights_dataframe) return result