#!/bin/bash # # Uses an HPC cluster (Mount Sinai chimera cluster, which uses lsf job # scheduler). This would need to be modified for other sites. # # Usage: GENERATE.sh <local|cluster> # set -e set -x DOWNLOAD_NAME=models_class1_pan_refined SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")" SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH") if [ "$1" != "cluster" ] then GPUS=$(nvidia-smi -L 2> /dev/null | wc -l) || GPUS=0 echo "Detected GPUS: $GPUS" PROCESSORS=$(getconf _NPROCESSORS_ONLN) echo "Detected processors: $PROCESSORS" if [ "$GPUS" -eq "0" ]; then NUM_JOBS=${NUM_JOBS-1} else NUM_JOBS=${NUM_JOBS-$GPUS} fi echo "Num jobs: $NUM_JOBS" PARALLELISM_ARGS+=" --num-jobs $NUM_JOBS --max-tasks-per-worker 1 --gpus $GPUS --max-workers-per-gpu 1" else PARALLELISM_ARGS+=" --cluster-parallelism --cluster-max-retries 3 --cluster-submit-command bsub --cluster-results-workdir $HOME/mhcflurry-scratch --cluster-script-prefix-path $SCRIPT_DIR/cluster_submit_script_header.mssm_hpc.gpu.lsf" fi rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME" mkdir -p "$SCRATCH_DIR/$DOWNLOAD_NAME" # Send stdout and stderr to a logfile included with the archive. #LOG="$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.$(date +%s).txt" #exec > >(tee -ia "$LOG") #exec 2> >(tee -ia "$LOG" >&2) # Log some environment info #echo "Invocation: $0 $@" #date #pip freeze #git status cd $SCRATCH_DIR/$DOWNLOAD_NAME export OMP_NUM_THREADS=1 export PYTHONUNBUFFERED=1 # CAHNGE TO CP ln -s $SCRIPT_DIR/make_multiallelic_training_data.py . time python make_multiallelic_training_data.py \ --hits "$(mhcflurry-downloads path data_mass_spec_annotated)/annotated_ms.csv.bz2" \ --expression "$(mhcflurry-downloads path data_curated)/rna_expression.csv.bz2" \ --out train.multiallelic.csv time mhcflurry-multiallelic-refinement \ --monoallelic-data "$(mhcflurry-downloads path data_curated)/curated_training_data.with_mass_spec.csv.bz2" \ --multiallelic-data train.multiallelic.csv \ --models-dir "$(mhcflurry-downloads path models_class1_pan)/models.with_mass_spec" --hyperparameters hyperparameters.yaml \ --out-affinity-predictor-dir $(pwd)/models.affinity \ --out-presentation-predictor-dir $(pwd)/models.presentation \ --worker-log-dir "$SCRATCH_DIR/$DOWNLOAD_NAME" \ $PARALLELISM_ARGS echo "Done training." bzip2 train.multiallelic.csv cp $SCRIPT_ABSOLUTE_PATH . bzip2 -f "$LOG" for i in $(ls LOG-worker.*.txt) ; do bzip2 -f $i ; done RESULT="$SCRATCH_DIR/${DOWNLOAD_NAME}.$(date +%Y%m%d).tar.bz2" tar -cjf "$RESULT" * echo "Created archive: $RESULT"