#!/bin/bash # # # Usage: GENERATE.sh <local|cluster> <fresh|continue-incomplete> # # cluster mode uses an HPC cluster (Mount Sinai chimera cluster, which uses lsf job # scheduler). This would need to be modified for other sites. # set -e set -x DOWNLOAD_NAME=models_class1_presentation SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")" SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH") if [ "$1" != "cluster" ] then GPUS=$(nvidia-smi -L 2> /dev/null | wc -l) || GPUS=0 echo "Detected GPUS: $GPUS" PROCESSORS=$(getconf _NPROCESSORS_ONLN) echo "Detected processors: $PROCESSORS" if [ "$GPUS" -eq "0" ]; then NUM_JOBS=${NUM_JOBS-1} else NUM_JOBS=${NUM_JOBS-$GPUS} fi echo "Num jobs: $NUM_JOBS" PARALLELISM_ARGS+=" --num-jobs $NUM_JOBS --max-tasks-per-worker 1 --gpus $GPUS --max-workers-per-gpu 1" else PARALLELISM_ARGS+=" --cluster-parallelism --cluster-max-retries 3 --cluster-submit-command bsub --cluster-results-workdir $HOME/mhcflurry-scratch --cluster-script-prefix-path $SCRIPT_DIR/cluster_submit_script_header.mssm_hpc.lsf" fi mkdir -p "$SCRATCH_DIR" if [ "$2" != "continue-incomplete" ] then echo "Fresh run" rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME" mkdir "$SCRATCH_DIR/$DOWNLOAD_NAME" else echo "Continuing incomplete run" fi # Send stdout and stderr to a logfile included with the archive. LOG="$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.$(date +%s).txt" exec > >(tee -ia "$LOG") exec 2> >(tee -ia "$LOG" >&2) # Log some environment info echo "Invocation: $0 $@" date pip freeze git status mhcflurry-downloads info cd $SCRATCH_DIR/$DOWNLOAD_NAME export OMP_NUM_THREADS=1 export PYTHONUNBUFFERED=1 if [ "$2" == "continue-incomplete" ] && [ -f "hits_with_tpm.csv.bz2" ] then echo "Reusing existing expression-annotated hits data" else cp $SCRIPT_DIR/annotate_hits_with_expression.py . time python annotate_hits_with_expression.py \ --hits "$(mhcflurry-downloads path data_mass_spec_annotated)/annotated_ms.csv.bz2" \ --expression "$(mhcflurry-downloads path data_curated)/rna_expression.csv.bz2" \ --out "$(pwd)/hits_with_tpm.csv" bzip2 -f hits_with_tpm.csv fi if [ "$2" == "continue-incomplete" ] && [ -f "train_data.csv.bz2" ] then echo "Reusing existing training data" else cp $SCRIPT_DIR/make_benchmark.py . time python make_benchmark.py \ --hits "$(pwd)/hits_with_tpm.csv.bz2" \ --proteome-peptides "$(mhcflurry-downloads path data_mass_spec_benchmark)/proteome_peptides.all.csv.bz2" \ --decoys-per-hit 99 \ --exclude-pmid 31844290 31495665 31154438 \ --only-format MULTIALLELIC \ --out "$(pwd)/train_data.csv" bzip2 -f train_data.csv fi mhcflurry-class1-train-presentation-models \ --data "$(pwd)/train_data.csv.bz2" \ --affinity-predictor "$(mhcflurry-downloads path models_class1_pan)/models.combined" \ --cleavage-predictor-with-flanks "$(mhcflurry-downloads path models_class1_cleavage)/models" \ --cleavage-predictor-without-flanks "$(mhcflurry-downloads path models_class1_cleavage_variants)/models.selected.no_flank" \ --out-models-dir "$(pwd)/models" cp $SCRIPT_ABSOLUTE_PATH . bzip2 -f "$LOG" for i in $(ls LOG-worker.*.txt) ; do bzip2 -f $i ; done RESULT="$SCRATCH_DIR/${DOWNLOAD_NAME}.$(date +%Y%m%d).tar.bz2" tar -cjf "$RESULT" * echo "Created archive: $RESULT"