#!/bin/bash # # Uses an HPC cluster (Mount Sinai chimera cluster, which uses lsf job # scheduler). This would need to be modified for other sites. # # Usage: GENERATE.sh <local|cluster> # set -e set -x DOWNLOAD_NAME=models_class1_pan_refined SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")" SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH") if [ "$1" != "cluster" ] then GPUS=$(nvidia-smi -L 2> /dev/null | wc -l) || GPUS=0 echo "Detected GPUS: $GPUS" PROCESSORS=$(getconf _NPROCESSORS_ONLN) echo "Detected processors: $PROCESSORS" if [ "$GPUS" -eq "0" ]; then NUM_JOBS=${NUM_JOBS-1} else NUM_JOBS=${NUM_JOBS-$GPUS} fi echo "Num jobs: $NUM_JOBS" PARALLELISM_ARGS+=" --num-jobs $NUM_JOBS --max-tasks-per-worker 1 --gpus $GPUS --max-workers-per-gpu 1" else PARALLELISM_ARGS+=" --cluster-parallelism --cluster-max-retries 3 --cluster-submit-command bsub --cluster-results-workdir $HOME/mhcflurry-scratch --cluster-script-prefix-path $SCRIPT_DIR/cluster_submit_script_header.mssm_hpc.lsf" fi rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME" mkdir -p "$SCRATCH_DIR/$DOWNLOAD_NAME" # Send stdout and stderr to a logfile included with the archive. LOG="$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.$(date +%s).txt" exec > >(tee -ia "$LOG") exec 2> >(tee -ia "$LOG" >&2) # Log some environment info echo "Invocation: $0 $@" date pip freeze git status cd $SCRATCH_DIR/$DOWNLOAD_NAME export OMP_NUM_THREADS=1 export PYTHONUNBUFFERED=1 cp $SCRIPT_DIR/make_multiallelic_training_data.py . cp $SCRIPT_DIR/hyperparameters.yaml . MONOALLELIC_TRAIN="$(mhcflurry-downloads path models_class1_pan)/models.with_mass_spec/train_data.csv.bz2" # ******************************************************** # First we refine a single model excluding chromosome 1. if false; then echo "Beginning testing run." time python make_multiallelic_training_data.py \ --hits "$(mhcflurry-downloads path data_mass_spec_annotated)/annotated_ms.csv.bz2" \ --expression "$(mhcflurry-downloads path data_curated)/rna_expression.csv.bz2" \ --exclude-contig "1" \ --decoys-per-hit 1 \ --out train.multiallelic.no_chr1.csv time mhcflurry-multiallelic-refinement \ --monoallelic-data "$MONOALLELIC_TRAIN" \ --multiallelic-data train.multiallelic.no_chr1.csv \ --models-dir "$(mhcflurry-downloads path models_class1_pan)/models.with_mass_spec" \ --hyperparameters hyperparameters.yaml \ --out-affinity-predictor-dir $(pwd)/test_models.no_chr1.affinity \ --out-presentation-predictor-dir $(pwd)/test_models.no_chr1.presentation \ --worker-log-dir "$SCRATCH_DIR/$DOWNLOAD_NAME" \ $PARALLELISM_ARGS time mhcflurry-calibrate-percentile-ranks \ --models-dir $(pwd)/test_models.no_chr1.affinity \ --match-amino-acid-distribution-data "$MONOALLELIC_TRAIN" \ --motif-summary \ --num-peptides-per-length 100000 \ --allele "HLA-A*02:01" "HLA-A*02:20" "HLA-C*02:10" \ --verbosity 1 \ $PARALLELISM_ARGS fi # ******************************************************** echo "Beginning production run" if [ -f "$SCRIPT_DIR/train.multiallelic.csv" ]; then echo "Using existing multiallelic train data." cp "$SCRIPT_DIR/train.multiallelic.csv" . else time python make_multiallelic_training_data.py \ --hits "$(mhcflurry-downloads path data_mass_spec_annotated)/annotated_ms.csv.bz2" \ --expression "$(mhcflurry-downloads path data_curated)/rna_expression.csv.bz2" \ --decoys-per-hit 1 \ --out train.multiallelic.csv \ --alleles "HLA-A*02:20" "HLA-A*02:05" fi ALLELE_LIST=$(bzcat "$MONOALLELIC_TRAIN" | cut -f 1 -d , | grep -v allele | uniq | sort | uniq) ALLELE_LIST+=$(cat train.multiallelic.csv | cut -f 7 -d , | gerp -v hla | uniq | tr ' ' '\n' | sort | uniq) ALLELE_LIST+=$(echo " " $(cat $SCRIPT_DIR/additional_alleles.txt | grep -v '#') ) time mhcflurry-multiallelic-refinement \ --monoallelic-data "$MONOALLELIC_TRAIN" \ --multiallelic-data train.multiallelic.csv \ --models-dir "$(mhcflurry-downloads path models_class1_pan)/models.with_mass_spec" \ --hyperparameters hyperparameters.yaml \ --out-affinity-predictor-dir $(pwd)/models.affinity \ --out-presentation-predictor-dir $(pwd)/models.presentation \ --worker-log-dir "$SCRATCH_DIR/$DOWNLOAD_NAME" \ --only-alleles-with-mass-spec \ $PARALLELISM_ARGS time mhcflurry-calibrate-percentile-ranks \ --models-dir $(pwd)/models.affinity \ --match-amino-acid-distribution-data "$MONOALLELIC_TRAIN" \ --motif-summary \ --num-peptides-per-length 100000 \ --allele $ALLELE_LIST \ --verbosity 1 \ $PARALLELISM_ARGS echo "Done training." #rm train.multiallelic.* cp $SCRIPT_ABSOLUTE_PATH . bzip2 -f "$LOG" for i in $(ls LOG-worker.*.txt) ; do bzip2 -f $i ; done RESULT="$SCRATCH_DIR/${DOWNLOAD_NAME}.$(date +%Y%m%d).tar.bz2" tar -cjf "$RESULT" * echo "Created archive: $RESULT"