import time
import collections
import logging

import numpy
import pandas

import keras.models
import keras.layers.pooling
import keras.regularizers
from keras.layers import Input
import keras.layers.merge
from keras.layers.core import Dense, Flatten, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization

from mhcflurry.hyperparameters import HyperparameterDefaults

from ..encodable_sequences import EncodableSequences
from ..regression_target import to_ic50, from_ic50
from ..common import random_peptides, amino_acid_distribution


class Class1NeuralNetwork(object):
    """
    Low level class I predictor consisting of a single neural network.
    
    Both single allele and pan-allele prediction are supported, but pan-allele
    is in development and not yet well performing.
    
    Users will generally use Class1AffinityPredictor, which gives a higher-level
    interface and supports ensembles.
    """
    weights_filename_extension = "npz"

    network_hyperparameter_defaults = HyperparameterDefaults(
        kmer_size=15,
        use_embedding=True,
        embedding_input_dim=21,
        embedding_output_dim=8,
        pseudosequence_use_embedding=True,
        layer_sizes=[32],
        dense_layer_l1_regularization=0.0,
        dense_layer_l2_regularization=0.0,
        activation="tanh",
        init="glorot_uniform",
        output_activation="sigmoid",
        dropout_probability=0.0,
        batch_normalization=True,
        embedding_init_method="glorot_uniform",
        locally_connected_layers=[],
    )

    compile_hyperparameter_defaults = HyperparameterDefaults(
        loss="mse",
        optimizer="rmsprop",
    )

    input_encoding_hyperparameter_defaults = HyperparameterDefaults(
        left_edge=4,
        right_edge=4)

    fit_hyperparameter_defaults = HyperparameterDefaults(
        max_epochs=250,
        validation_split=None,
        early_stopping=False,
        take_best_epoch=False,
        random_negative_rate=0.0,
        random_negative_constant=0,
        random_negative_affinity_min=50000.0,
        random_negative_affinity_max=50000.0,
        random_negative_match_distribution=True,
        random_negative_distribution_smoothing=0.0)

    early_stopping_hyperparameter_defaults = HyperparameterDefaults(
        monitor='val_loss',
        min_delta=0,
        patience=0,
        verbose=1,
        mode='auto')

    hyperparameter_defaults = network_hyperparameter_defaults.extend(
        compile_hyperparameter_defaults).extend(
        input_encoding_hyperparameter_defaults).extend(
        fit_hyperparameter_defaults).extend(
        early_stopping_hyperparameter_defaults)

    def __init__(self, **hyperparameters):
        self.hyperparameters = self.hyperparameter_defaults.with_defaults(
            hyperparameters)
        self.network = None
        self.loss_history = None
        self.fit_seconds = None
        self.fit_num_points = None

    def get_config(self):
        """
        serialize to a dict all attributes except model weights
        
        Returns
        -------
        dict
        """
        result = dict(self.__dict__)
        del result['network']
        result['network_json'] = self.network.to_json()
        return result

    @classmethod
    def from_config(cls, config):
        """
        deserialize from a dict returned by get_config().
        
        The weights of the neural network are not restored by this function.
        You must call `restore_weights` separately.
        
        Parameters
        ----------
        config : dict

        Returns
        -------
        Class1NeuralNetwork

        """
        config = dict(config)
        instance = cls(**config.pop('hyperparameters'))
        instance.network = keras.models.model_from_json(
            config.pop('network_json'))
        instance.__dict__.update(config)
        return instance

    def __getstate__(self):
        """
        serialize to a dict. Model weights are included. For pickle support.
        
        Returns
        -------
        dict

        """
        result = self.get_config()
        result['network_weights'] = self.get_weights()
        return result

    def __setstate__(self, state):
        """
        deserialize from a dict. Model weights are included. For pickle support.
        
        Parameters
        ----------
        state : dict


        """
        network_json = state.pop('network_json')
        network_weights = state.pop('network_weights')
        self.__dict__.update(state)
        self.network = keras.models.model_from_json(network_json)
        self.set_weights(network_weights)

    def save_weights(self, filename):
        """
        Save the model weights to the given filename using numpy's ".npz"
        format.
        
        Parameters
        ----------
        filename : string
            Should end in ".npz".

        """
        weights_list = self.network.get_weights()
        numpy.savez(
            filename,
            **dict((("array_%d" % i), w) for (i, w) in enumerate(weights_list)))

    def restore_weights(self, filename):
        """
        Restore model weights from the given filename, which should have been
        created with `save_weights`.
        
        Parameters
        ----------
        filename : string
            Should end in ".npz".

        """
        loaded = numpy.load(filename)
        weights = [
            loaded["array_%d" % i]
            for i in range(len(loaded.keys()))
        ]
        loaded.close()
        self.network.set_weights(weights)

    def peptides_to_network_input(self, peptides):
        """
        Encode peptides to the fixed-length encoding expected by the neural
        network (which depends on the architecture).
        
        Parameters
        ----------
        peptides : EncodableSequences or list of string

        Returns
        -------
        numpy.array
        """
        encoder = EncodableSequences.create(peptides)
        if self.hyperparameters['use_embedding']:
            encoded = encoder.variable_length_to_fixed_length_categorical(
                max_length=self.hyperparameters['kmer_size'],
                **self.input_encoding_hyperparameter_defaults.subselect(
                    self.hyperparameters))
        else:
            encoded = encoder.variable_length_to_fixed_length_one_hot(
                max_length=self.hyperparameters['kmer_size'],
                **self.input_encoding_hyperparameter_defaults.subselect(
                    self.hyperparameters))
        assert len(encoded) == len(peptides)
        return encoded

    def pseudosequence_to_network_input(self, pseudosequences):
        """
        Encode pseudosequences to the fixed-length encoding expected by the neural
        network (which depends on the architecture).

        Parameters
        ----------
        pseudosequences : EncodableSequences or list of string

        Returns
        -------
        numpy.array
        """
        encoder = EncodableSequences.create(pseudosequences)
        if self.hyperparameters['pseudosequence_use_embedding']:
            encoded = encoder.fixed_length_categorical()
        else:
            encoded = encoder.fixed_length_one_hot()
        assert len(encoded) == len(pseudosequences)
        return encoded

    def fit(
            self,
            peptides,
            affinities,
            allele_pseudosequences=None,
            sample_weights=None,
            verbose=1):
        """
        Fit the neural network.
        
        Parameters
        ----------
        peptides : EncodableSequences or list of string
        
        affinities : list of float
        
        allele_pseudosequences : EncodableSequences or list of string, optional
            If not specified, the model will be a single-allele predictor.
            
        sample_weights : list of float, optional
            If not specified, all samples (including random negatives added
            during training) will have equal weight. If specified, the random
            negatives will be assigned weight=1.0.
        
        verbose : int
            Keras verbosity level
        """

        self.fit_num_points = len(peptides)

        encodable_peptides = EncodableSequences.create(peptides)
        peptide_encoding = self.peptides_to_network_input(encodable_peptides)

        length_counts = (
            pandas.Series(encodable_peptides.sequences)
            .str.len().value_counts().to_dict())

        num_random_negative = {}
        for length in range(8, 16):
            num_random_negative[length] = int(
                length_counts.get(length, 0) *
                self.hyperparameters['random_negative_rate'] +
                self.hyperparameters['random_negative_constant'])
        num_random_negative = pandas.Series(num_random_negative)
        logging.info("Random negative counts per length:\n%s" % (
            str(num_random_negative.to_dict())))

        aa_distribution = None
        if self.hyperparameters['random_negative_match_distribution']:
            aa_distribution = amino_acid_distribution(
                encodable_peptides.sequences,
                smoothing=self.hyperparameters[
                    'random_negative_distribution_smoothing'])
            logging.info(
                "Using amino acid distribution for random negative:\n%s" % (
                str(aa_distribution.to_dict())))

        y_values = from_ic50(affinities)
        assert numpy.isnan(y_values).sum() == 0, numpy.isnan(y_values).sum()

        x_dict_without_random_negatives = {
            'peptide': peptide_encoding,
        }
        pseudosequence_length = None
        if allele_pseudosequences is not None:
            pseudosequences_input = self.pseudosequence_to_network_input(
                allele_pseudosequences)
            pseudosequence_length = len(pseudosequences_input[0])
            x_dict_without_random_negatives['pseudosequence'] = (
                pseudosequences_input)

        if self.network is None:
            self.network = self.make_network(
                pseudosequence_length=pseudosequence_length,
                **self.network_hyperparameter_defaults.subselect(
                    self.hyperparameters))
            self.compile()

        y_dict_with_random_negatives = {
            "output": numpy.concatenate([
                from_ic50(
                    numpy.random.uniform(
                        self.hyperparameters[
                            'random_negative_affinity_min'],
                        self.hyperparameters[
                            'random_negative_affinity_max'],
                        int(num_random_negative.sum()))),
                y_values,
            ]),
        }
        if sample_weights is not None:
            sample_weights_with_random_negatives = numpy.concatenate([
                numpy.ones(int(num_random_negative.sum())),
                sample_weights])
        else:
            sample_weights_with_random_negatives = None

        val_losses = []
        min_val_loss_iteration = None
        min_val_loss = None

        self.loss_history = collections.defaultdict(list)
        start = time.time()
        for i in range(self.hyperparameters['max_epochs']):
            random_negative_peptides_list = []
            for (length, count) in num_random_negative.items():
                random_negative_peptides_list.extend(
                    random_peptides(
                        count,
                        length=length,
                        distribution=aa_distribution))
            random_negative_peptides_encoding = (
                self.peptides_to_network_input(
                    random_negative_peptides_list))

            x_dict_with_random_negatives = {
                "peptide": numpy.concatenate([
                    random_negative_peptides_encoding,
                    peptide_encoding,
                ]) if len(random_negative_peptides_encoding) > 0
                else peptide_encoding
            }
            if pseudosequence_length:
                # TODO: add random pseudosequences for random negative peptides
                raise NotImplemented(
                    "Allele pseudosequences unsupported with random negatives")

            fit_history = self.network.fit(
                x_dict_with_random_negatives,
                y_dict_with_random_negatives,
                shuffle=True,
                verbose=verbose,
                epochs=1,
                validation_split=self.hyperparameters['validation_split'],
                sample_weight=sample_weights_with_random_negatives)

            for (key, value) in fit_history.history.items():
                self.loss_history[key].extend(value)

            logging.info(
                "Epoch %3d / %3d: loss=%g. Min val loss at epoch %s" % (
                    i,
                    self.hyperparameters['max_epochs'],
                    self.loss_history['loss'][-1],
                    min_val_loss_iteration))

            if self.hyperparameters['validation_split']:
                val_loss = self.loss_history['val_loss'][-1]
                val_losses.append(val_loss)

                if min_val_loss is None or val_loss <= min_val_loss:
                    min_val_loss = val_loss
                    min_val_loss_iteration = i

                if self.hyperparameters['early_stopping']:
                    threshold = (
                        min_val_loss_iteration +
                        self.hyperparameters['patience'])
                    if i > threshold:
                        logging.info("Early stopping")
                        break
        self.fit_seconds = time.time() - start

    def predict(self, peptides, allele_pseudosequences=None):
        """
        
        Parameters
        ----------
        peptides
        allele_pseudosequences

        Returns
        -------

        """
        x_dict = {
            'peptide': self.peptides_to_network_input(peptides)
        }
        if allele_pseudosequences is not None:
            pseudosequences_input = self.pseudosequence_to_network_input(
                allele_pseudosequences)
            x_dict['pseudosequence'] = pseudosequences_input
        (predictions,) = numpy.array(self.network.predict(x_dict)).T
        return to_ic50(predictions)

    def compile(self):
        self.network.compile(
            **self.compile_hyperparameter_defaults.subselect(
                self.hyperparameters))

    @staticmethod
    def make_network(
            pseudosequence_length,
            kmer_size,
            use_embedding,
            embedding_input_dim,
            embedding_output_dim,
            pseudosequence_use_embedding,
            layer_sizes,
            dense_layer_l1_regularization,
            dense_layer_l2_regularization,
            activation,
            init,
            output_activation,
            dropout_probability,
            batch_normalization,
            embedding_init_method,
            locally_connected_layers):

        if use_embedding:
            peptide_input = Input(
                shape=(kmer_size,), dtype='int32', name='peptide')
            current_layer = Embedding(
                input_dim=embedding_input_dim,
                output_dim=embedding_output_dim,
                input_length=kmer_size,
                embeddings_initializer=embedding_init_method)(peptide_input)
        else:
            peptide_input = Input(
                shape=(kmer_size, 21), dtype='float32', name='peptide')
            current_layer = peptide_input

        inputs = [peptide_input]

        for locally_connected_params in locally_connected_layers:
            current_layer = keras.layers.LocallyConnected1D(
                **locally_connected_params)(current_layer)

        current_layer = Flatten()(current_layer)

        if batch_normalization:
            current_layer = BatchNormalization()(current_layer)

        if dropout_probability:
            current_layer = Dropout(dropout_probability)(current_layer)

        if pseudosequence_length:
            if pseudosequence_use_embedding:
                pseudosequence_input = Input(
                    shape=(pseudosequence_length,),
                    dtype='int32',
                    name='pseudosequence')
                pseudo_embedding_layer = Embedding(
                    input_dim=embedding_input_dim,
                    output_dim=embedding_output_dim,
                    input_length=pseudosequence_length,
                    embeddings_initializer=embedding_init_method)(
                    pseudosequence_input)
            else:
                pseudosequence_input = Input(
                    shape=(pseudosequence_length, 21),
                    dtype='float32', name='peptide')
                pseudo_embedding_layer = pseudosequence_input
            inputs.append(pseudosequence_input)
            pseudo_embedding_layer = Flatten()(pseudo_embedding_layer)

            current_layer = keras.layers.concatenate([
                current_layer, pseudo_embedding_layer
            ])
            
        for layer_size in layer_sizes:
            kernel_regularizer = None
            l1 = dense_layer_l1_regularization
            l2 = dense_layer_l2_regularization
            if l1 > 0 or l2 > 0:
                kernel_regularizer = keras.regularizers.l1_l2(l1, l2)

            current_layer = Dense(
                layer_size,
                activation=activation,
                kernel_regularizer=kernel_regularizer)(current_layer)

            if batch_normalization:
                current_layer = BatchNormalization()(current_layer)

            if dropout_probability > 0:
                current_layer = Dropout(dropout_probability)(current_layer)

        output = Dense(
            1,
            kernel_initializer=init,
            activation=output_activation,
            name="output")(current_layer)
        model = keras.models.Model(inputs=inputs, outputs=[output])
        return model