import time import collections import logging import numpy import pandas import keras.models import keras.layers.pooling import keras.regularizers from keras.layers import Input import keras.layers.merge from keras.layers.core import Dense, Flatten, Dropout from keras.layers.embeddings import Embedding from keras.layers.normalization import BatchNormalization from mhcflurry.hyperparameters import HyperparameterDefaults from ..encodable_sequences import EncodableSequences from ..regression_target import to_ic50, from_ic50 from ..common import random_peptides, amino_acid_distribution class Class1NeuralNetwork(object): """ Low level class I predictor consisting of a single neural network. Both single allele and pan-allele prediction are supported, but pan-allele is in development and not yet well performing. Users will generally use Class1AffinityPredictor, which gives a higher-level interface and supports ensembles. """ weights_filename_extension = "npz" network_hyperparameter_defaults = HyperparameterDefaults( kmer_size=15, use_embedding=True, embedding_input_dim=21, embedding_output_dim=8, pseudosequence_use_embedding=True, layer_sizes=[32], dense_layer_l1_regularization=0.0, dense_layer_l2_regularization=0.0, activation="tanh", init="glorot_uniform", output_activation="sigmoid", dropout_probability=0.0, batch_normalization=True, embedding_init_method="glorot_uniform", locally_connected_layers=[], ) compile_hyperparameter_defaults = HyperparameterDefaults( loss="mse", optimizer="rmsprop", ) input_encoding_hyperparameter_defaults = HyperparameterDefaults( left_edge=4, right_edge=4) fit_hyperparameter_defaults = HyperparameterDefaults( max_epochs=250, validation_split=None, early_stopping=False, take_best_epoch=False, random_negative_rate=0.0, random_negative_constant=0, random_negative_affinity_min=50000.0, random_negative_affinity_max=50000.0, random_negative_match_distribution=True, random_negative_distribution_smoothing=0.0) early_stopping_hyperparameter_defaults = HyperparameterDefaults( monitor='val_loss', min_delta=0, patience=0, verbose=1, mode='auto') hyperparameter_defaults = network_hyperparameter_defaults.extend( compile_hyperparameter_defaults).extend( input_encoding_hyperparameter_defaults).extend( fit_hyperparameter_defaults).extend( early_stopping_hyperparameter_defaults) def __init__(self, **hyperparameters): self.hyperparameters = self.hyperparameter_defaults.with_defaults( hyperparameters) self.network = None self.loss_history = None self.fit_seconds = None self.fit_num_points = None def get_config(self): """ serialize to a dict all attributes except model weights Returns ------- dict """ result = dict(self.__dict__) del result['network'] result['network_json'] = self.network.to_json() return result @classmethod def from_config(cls, config): """ deserialize from a dict returned by get_config(). The weights of the neural network are not restored by this function. You must call `restore_weights` separately. Parameters ---------- config : dict Returns ------- Class1NeuralNetwork """ config = dict(config) instance = cls(**config.pop('hyperparameters')) instance.network = keras.models.model_from_json( config.pop('network_json')) instance.__dict__.update(config) return instance def __getstate__(self): """ serialize to a dict. Model weights are included. For pickle support. Returns ------- dict """ result = self.get_config() result['network_weights'] = self.get_weights() return result def __setstate__(self, state): """ deserialize from a dict. Model weights are included. For pickle support. Parameters ---------- state : dict """ network_json = state.pop('network_json') network_weights = state.pop('network_weights') self.__dict__.update(state) self.network = keras.models.model_from_json(network_json) self.set_weights(network_weights) def save_weights(self, filename): """ Save the model weights to the given filename using numpy's ".npz" format. Parameters ---------- filename : string Should end in ".npz". """ weights_list = self.network.get_weights() numpy.savez( filename, **dict((("array_%d" % i), w) for (i, w) in enumerate(weights_list))) def restore_weights(self, filename): """ Restore model weights from the given filename, which should have been created with `save_weights`. Parameters ---------- filename : string Should end in ".npz". """ loaded = numpy.load(filename) weights = [ loaded["array_%d" % i] for i in range(len(loaded.keys())) ] loaded.close() self.network.set_weights(weights) def peptides_to_network_input(self, peptides): """ Encode peptides to the fixed-length encoding expected by the neural network (which depends on the architecture). Parameters ---------- peptides : EncodableSequences or list of string Returns ------- numpy.array """ encoder = EncodableSequences.create(peptides) if self.hyperparameters['use_embedding']: encoded = encoder.variable_length_to_fixed_length_categorical( max_length=self.hyperparameters['kmer_size'], **self.input_encoding_hyperparameter_defaults.subselect( self.hyperparameters)) else: encoded = encoder.variable_length_to_fixed_length_one_hot( max_length=self.hyperparameters['kmer_size'], **self.input_encoding_hyperparameter_defaults.subselect( self.hyperparameters)) assert len(encoded) == len(peptides) return encoded def pseudosequence_to_network_input(self, pseudosequences): """ Encode pseudosequences to the fixed-length encoding expected by the neural network (which depends on the architecture). Parameters ---------- pseudosequences : EncodableSequences or list of string Returns ------- numpy.array """ encoder = EncodableSequences.create(pseudosequences) if self.hyperparameters['pseudosequence_use_embedding']: encoded = encoder.fixed_length_categorical() else: encoded = encoder.fixed_length_one_hot() assert len(encoded) == len(pseudosequences) return encoded def fit( self, peptides, affinities, allele_pseudosequences=None, sample_weights=None, verbose=1): """ Fit the neural network. Parameters ---------- peptides : EncodableSequences or list of string affinities : list of float allele_pseudosequences : EncodableSequences or list of string, optional If not specified, the model will be a single-allele predictor. sample_weights : list of float, optional If not specified, all samples (including random negatives added during training) will have equal weight. If specified, the random negatives will be assigned weight=1.0. verbose : int Keras verbosity level """ self.fit_num_points = len(peptides) encodable_peptides = EncodableSequences.create(peptides) peptide_encoding = self.peptides_to_network_input(encodable_peptides) length_counts = ( pandas.Series(encodable_peptides.sequences) .str.len().value_counts().to_dict()) num_random_negative = {} for length in range(8, 16): num_random_negative[length] = int( length_counts.get(length, 0) * self.hyperparameters['random_negative_rate'] + self.hyperparameters['random_negative_constant']) num_random_negative = pandas.Series(num_random_negative) logging.info("Random negative counts per length:\n%s" % ( str(num_random_negative.to_dict()))) aa_distribution = None if self.hyperparameters['random_negative_match_distribution']: aa_distribution = amino_acid_distribution( encodable_peptides.sequences, smoothing=self.hyperparameters[ 'random_negative_distribution_smoothing']) logging.info( "Using amino acid distribution for random negative:\n%s" % ( str(aa_distribution.to_dict()))) y_values = from_ic50(affinities) assert numpy.isnan(y_values).sum() == 0, numpy.isnan(y_values).sum() x_dict_without_random_negatives = { 'peptide': peptide_encoding, } pseudosequence_length = None if allele_pseudosequences is not None: pseudosequences_input = self.pseudosequence_to_network_input( allele_pseudosequences) pseudosequence_length = len(pseudosequences_input[0]) x_dict_without_random_negatives['pseudosequence'] = ( pseudosequences_input) if self.network is None: self.network = self.make_network( pseudosequence_length=pseudosequence_length, **self.network_hyperparameter_defaults.subselect( self.hyperparameters)) self.compile() y_dict_with_random_negatives = { "output": numpy.concatenate([ from_ic50( numpy.random.uniform( self.hyperparameters[ 'random_negative_affinity_min'], self.hyperparameters[ 'random_negative_affinity_max'], int(num_random_negative.sum()))), y_values, ]), } if sample_weights is not None: sample_weights_with_random_negatives = numpy.concatenate([ numpy.ones(int(num_random_negative.sum())), sample_weights]) else: sample_weights_with_random_negatives = None val_losses = [] min_val_loss_iteration = None min_val_loss = None self.loss_history = collections.defaultdict(list) start = time.time() for i in range(self.hyperparameters['max_epochs']): random_negative_peptides_list = [] for (length, count) in num_random_negative.items(): random_negative_peptides_list.extend( random_peptides( count, length=length, distribution=aa_distribution)) random_negative_peptides_encoding = ( self.peptides_to_network_input( random_negative_peptides_list)) x_dict_with_random_negatives = { "peptide": numpy.concatenate([ random_negative_peptides_encoding, peptide_encoding, ]) if len(random_negative_peptides_encoding) > 0 else peptide_encoding } if pseudosequence_length: # TODO: add random pseudosequences for random negative peptides raise NotImplemented( "Allele pseudosequences unsupported with random negatives") fit_history = self.network.fit( x_dict_with_random_negatives, y_dict_with_random_negatives, shuffle=True, verbose=verbose, epochs=1, validation_split=self.hyperparameters['validation_split'], sample_weight=sample_weights_with_random_negatives) for (key, value) in fit_history.history.items(): self.loss_history[key].extend(value) logging.info( "Epoch %3d / %3d: loss=%g. Min val loss at epoch %s" % ( i, self.hyperparameters['max_epochs'], self.loss_history['loss'][-1], min_val_loss_iteration)) if self.hyperparameters['validation_split']: val_loss = self.loss_history['val_loss'][-1] val_losses.append(val_loss) if min_val_loss is None or val_loss <= min_val_loss: min_val_loss = val_loss min_val_loss_iteration = i if self.hyperparameters['early_stopping']: threshold = ( min_val_loss_iteration + self.hyperparameters['patience']) if i > threshold: logging.info("Early stopping") break self.fit_seconds = time.time() - start def predict(self, peptides, allele_pseudosequences=None): """ Parameters ---------- peptides allele_pseudosequences Returns ------- """ x_dict = { 'peptide': self.peptides_to_network_input(peptides) } if allele_pseudosequences is not None: pseudosequences_input = self.pseudosequence_to_network_input( allele_pseudosequences) x_dict['pseudosequence'] = pseudosequences_input (predictions,) = numpy.array(self.network.predict(x_dict)).T return to_ic50(predictions) def compile(self): self.network.compile( **self.compile_hyperparameter_defaults.subselect( self.hyperparameters)) @staticmethod def make_network( pseudosequence_length, kmer_size, use_embedding, embedding_input_dim, embedding_output_dim, pseudosequence_use_embedding, layer_sizes, dense_layer_l1_regularization, dense_layer_l2_regularization, activation, init, output_activation, dropout_probability, batch_normalization, embedding_init_method, locally_connected_layers): if use_embedding: peptide_input = Input( shape=(kmer_size,), dtype='int32', name='peptide') current_layer = Embedding( input_dim=embedding_input_dim, output_dim=embedding_output_dim, input_length=kmer_size, embeddings_initializer=embedding_init_method)(peptide_input) else: peptide_input = Input( shape=(kmer_size, 21), dtype='float32', name='peptide') current_layer = peptide_input inputs = [peptide_input] for locally_connected_params in locally_connected_layers: current_layer = keras.layers.LocallyConnected1D( **locally_connected_params)(current_layer) current_layer = Flatten()(current_layer) if batch_normalization: current_layer = BatchNormalization()(current_layer) if dropout_probability: current_layer = Dropout(dropout_probability)(current_layer) if pseudosequence_length: if pseudosequence_use_embedding: pseudosequence_input = Input( shape=(pseudosequence_length,), dtype='int32', name='pseudosequence') pseudo_embedding_layer = Embedding( input_dim=embedding_input_dim, output_dim=embedding_output_dim, input_length=pseudosequence_length, embeddings_initializer=embedding_init_method)( pseudosequence_input) else: pseudosequence_input = Input( shape=(pseudosequence_length, 21), dtype='float32', name='peptide') pseudo_embedding_layer = pseudosequence_input inputs.append(pseudosequence_input) pseudo_embedding_layer = Flatten()(pseudo_embedding_layer) current_layer = keras.layers.concatenate([ current_layer, pseudo_embedding_layer ]) for layer_size in layer_sizes: kernel_regularizer = None l1 = dense_layer_l1_regularization l2 = dense_layer_l2_regularization if l1 > 0 or l2 > 0: kernel_regularizer = keras.regularizers.l1_l2(l1, l2) current_layer = Dense( layer_size, activation=activation, kernel_regularizer=kernel_regularizer)(current_layer) if batch_normalization: current_layer = BatchNormalization()(current_layer) if dropout_probability > 0: current_layer = Dropout(dropout_probability)(current_layer) output = Dense( 1, kernel_initializer=init, activation=output_activation, name="output")(current_layer) model = keras.models.Model(inputs=inputs, outputs=[output]) return model