# mhcflurry Open source peptide/MHC I binding affinity prediction. Competitive accuracy, fast, and [documented](http://www.hammerlab.org/mhcflurry/). [](https://travis-ci.org/hammerlab/mhcflurry) [](https://coveralls.io/github/hammerlab/mhcflurry?branch=master) MHCflurry supports Class I peptide/MHC binding affinity prediction using ensembles of allele-specific models. You can fit MHCflurry models to your own data or download models that we fit to data from [IEDB](http://www.iedb.org/home_v3.php) and [Kim 2014](http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-241). MHCflurry supports Python versions 2.7 and 3.4+. It uses the [keras](https://keras.io) neural network library via either the Tensorflow or Theano backends. GPUs may optionally be used for a generally modest speed improvement. If you find MHCflurry useful in your research please cite: > O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC binding affinity prediction. bioRxiv. Available at: http://www.biorxiv.org/content/early/2017/08/09/174243. ## Installation (pip) Install the package: ``` $ pip install mhcflurry ``` Then download our datasets and trained models: ``` $ mhcflurry-downloads fetch ``` You can now generate predictions: ``` $ mhcflurry-predict \ --alleles HLA-A0201 HLA-A0301 \ --peptides SIINFEKL SIINFEKD SIINFEKQ \ --out /tmp/predictions.csv \ Wrote: /tmp/predictions.csv ``` See the [documentation](http://www.hammerlab.org/mhcflurry/) for more details.