import logging logging.getLogger('matplotlib').disabled = True logging.getLogger('tensorflow').disabled = True import tempfile import os import pandas from numpy.testing import assert_equal, assert_array_less, assert_array_equal from mhcflurry import predict_scan_command from mhcflurry.testing_utils import cleanup, startup teardown = cleanup setup = startup from . import data_path def read_output_csv(filename): return pandas.read_csv( filename, converters={"n_flank": str, "c_flank": str}) def test_fasta(): args = [ data_path("example.fasta"), "--alleles", "HLA-A*02:01,HLA-A*03:01,HLA-B*57:01,HLA-B*45:01,HLA-C*02:02,HLA-C*07:02", ] deletes = [] try: fd_out = tempfile.NamedTemporaryFile(delete=False, suffix=".csv") deletes.append(fd_out.name) full_args = args + ["--out", fd_out.name] print("Running with args: %s" % full_args) predict_scan_command.run(full_args) result = read_output_csv(fd_out.name) print(result) assert not result.isnull().any().any() finally: for delete in deletes: os.unlink(delete) assert_equal(result.best_allele.nunique(), 6) assert_equal(result.sequence_name.nunique(), 3) assert_array_less(result.affinity_percentile, 2.0) def test_fasta_50nm(): args = [ data_path("example.fasta"), "--alleles", "HLA-A*02:01,HLA-A*03:01,HLA-B*57:01,HLA-B*45:01,HLA-C*02:02,HLA-C*07:02", "--results-filtered", "affinity", "--threshold-affinity", "50", ] deletes = [] try: fd_out = tempfile.NamedTemporaryFile(delete=False, suffix=".csv") deletes.append(fd_out.name) full_args = args + ["--out", fd_out.name] print("Running with args: %s" % full_args) predict_scan_command.run(full_args) result = read_output_csv(fd_out.name) print(result) assert not result.isnull().any().any() finally: for delete in deletes: os.unlink(delete) assert len(result) > 0 assert_array_less(result.affinity, 50) def test_fasta_best(): args = [ data_path("example.fasta"), "--alleles", "HLA-A*02:01,HLA-A*03:01,HLA-B*57:01,HLA-B*45:01,HLA-C*02:02,HLA-C*07:02", "--results-best", "affinity_percentile", ] deletes = [] try: fd_out = tempfile.NamedTemporaryFile(delete=False, suffix=".csv") deletes.append(fd_out.name) full_args = args + ["--out", fd_out.name] print("Running with args: %s" % full_args) predict_scan_command.run(full_args) result = read_output_csv(fd_out.name) print(result) assert not result.isnull().any().any() finally: for delete in deletes: os.unlink(delete) assert len(result) > 0 assert_array_equal( result.groupby(["sequence_name"]).peptide.count().values, 1) def test_commandline_sequences(): args = [ "--sequences", "ASDFGHKL", "QWERTYIPCVNM", "--alleles", "HLA-A0201,HLA-A0301", "H-2-Kb", "--peptide-lengths", "8", "--results-all", ] deletes = [] try: fd_out = tempfile.NamedTemporaryFile(delete=False, suffix=".csv") deletes.append(fd_out.name) full_args = args + ["--out", fd_out.name] print("Running with args: %s" % full_args) predict_scan_command.run(full_args) result = read_output_csv(fd_out.name) print(result) finally: for delete in deletes: os.unlink(delete) print(result) assert_equal(result.sequence_name.nunique(), 2) assert_equal(result.best_allele.nunique(), 3) assert_equal(result.experiment_name.nunique(), 2) assert_equal((result.peptide == "ASDFGHKL").sum(), 2) assert_equal((result.peptide != "ASDFGHKL").sum(), 10)