#!/bin/bash # # Train pan-allele MHCflurry Class I models. Supports re-starting a failed run. # set -e set -x DOWNLOAD_NAME=models_class1_pan_unselected SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")" SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH") mkdir -p "$SCRATCH_DIR" if [ "$1" != "continue-incomplete" ] then echo "Fresh run" rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME" mkdir "$SCRATCH_DIR/$DOWNLOAD_NAME" else echo "Continuing incomplete run" fi # Send stdout and stderr to a logfile included with the archive. LOG="$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.$(date +%s).txt" exec > >(tee -ia "$LOG") exec 2> >(tee -ia "$LOG" >&2) # Log some environment info echo "Invocation: $0 $@" date pip freeze git status mhcflurry-downloads fetch data_curated allele_sequences random_peptide_predictions cd $SCRATCH_DIR/$DOWNLOAD_NAME cp $SCRIPT_DIR/generate_hyperparameters.py . python generate_hyperparameters.py > hyperparameters.yaml GPUS=$(nvidia-smi -L 2> /dev/null | wc -l) || GPUS=0 echo "Detected GPUS: $GPUS" PROCESSORS=$(getconf _NPROCESSORS_ONLN) echo "Detected processors: $PROCESSORS" if [ "$GPUS" -eq "0" ]; then NUM_JOBS=${NUM_JOBS-1} else NUM_JOBS=${NUM_JOBS-$GPUS} fi echo "Num jobs: $NUM_JOBS" export PYTHONUNBUFFERED=1 if [ "$1" != "continue-incomplete" ] then cp $SCRIPT_DIR/generate_hyperparameters.py . python generate_hyperparameters.py > hyperparameters.yaml fi for kind in with_mass_spec no_mass_spec do EXTRA_TRAIN_ARGS="" if [ "$1" == "continue-incomplete" ] && [ -d "models.${kind}" ] then echo "Will continue existing run: $kind" EXTRA_TRAIN_ARGS="--continue-incomplete" fi mhcflurry-class1-train-pan-allele-models \ --data "$(mhcflurry-downloads path data_curated)/curated_training_data.${kind}.csv.bz2" \ --allele-sequences "$(mhcflurry-downloads path allele_sequences)/allele_sequences.csv" \ --pretrain-data "$(mhcflurry-downloads path random_peptide_predictions)/predictions.csv.bz2" \ --held-out-measurements-per-allele-fraction-and-max 0.25 100 \ --ensemble-size 4 \ --hyperparameters hyperparameters.yaml \ --out-models-dir models.${kind} \ --worker-log-dir "$SCRATCH_DIR/$DOWNLOAD_NAME" \ --verbosity 0 \ --num-jobs $NUM_JOBS --max-tasks-per-worker 1 --gpus $GPUS --max-workers-per-gpu 1 \ $EXTRA_TRAIN_ARGS done cp $SCRIPT_ABSOLUTE_PATH . bzip2 -f "$LOG" for i in $(ls LOG-worker.*.txt) ; do bzip2 -f $i ; done RESULT="$SCRATCH_DIR/${DOWNLOAD_NAME}.$(date +%Y%m%d).tar.bz2" tar -cjf "$RESULT" * echo "Created archive: $RESULT" # Split into <2GB chunks for GitHub PARTS="${RESULT}.part." # Check for pre-existing part files and rename them. for i in $(ls "${PARTS}"* ) do DEST="${i}.OLD.$(date +%s)" echo "WARNING: already exists: $i . Moving to $DEST" mv $i $DEST done split -b 2000M "$RESULT" "$PARTS" echo "Split into parts:" ls -lh "${PARTS}"*