#!/usr/bin/env python """ Turn a raw CSV snapshot of the IEDB contents into a usable class I binding prediction dataset by grouping all unique pMHCs """ from collections import defaultdict from os.path import join import pickle import numpy as np import pandas as pd from mhcflurry.paths import CLASS1_DATA_DIRECTORY IEDB_SOURCE_FILENAME = "mhc_ligand_full.csv" IEDB_SOURCE_PATH = join(CLASS1_DATA_DIRECTORY, IEDB_SOURCE_FILENAME) OUTPUT_FILENAME = "iedb_human_class1_assay_datasets.pickle" OUTPUT_PATH = join(CLASS1_DATA_DIRECTORY, OUTPUT_FILENAME) if __name__ == "__main__": df = pd.read_csv( IEDB_SOURCE_PATH, error_bad_lines=False, encoding="latin-1", header=[0, 1]) alleles = df["MHC"]["Allele Name"] n = len(alleles) print("# total: %d" % n) mask = np.zeros(n, dtype=bool) patterns = [ "HLA-A", "HLA-B", "HLA-C", # "H-2-D", # "H-2-K", # "H-2-L", ] for pattern in patterns: pattern_mask = alleles.str.startswith(pattern) print("# %s: %d" % (pattern, pattern_mask.sum())) mask |= pattern_mask df = df[mask] print("# entries matching allele masks: %d" % (len(df))) assay_group = df["Assay"]["Assay Group"] assay_method = df["Assay"]["Method/Technique"] groups = df.groupby([assay_group, assay_method]) print("---") print("Assays") assay_dataframes = {} # create a dataframe for every distinct kind of assay which is used # by IEDB submitters to measure peptide-MHC affinity or stability for (assay_group, assay_method), group_data in sorted( groups, key=lambda x: len(x[1]), reverse=True): print("%s (%s): %d" % (assay_group, assay_method, len(group_data))) group_alleles = group_data["MHC"]["Allele Name"] group_peptides = group_data["Epitope"]["Description"] distinct_pmhc = group_data.groupby([group_alleles, group_peptides]) columns = defaultdict(list) for (allele, peptide), pmhc_group in distinct_pmhc: columns["mhc"].append(allele) columns["peptide"].append(peptide) # performing median in log space since in two datapoint case # we don't want to take e.g. (10 + 1000) / 2.0 = 505 # but would prefer something like 10 ** ( (1 + 3) / 2.0) = 100 columns["value"].append( np.exp( np.median( np.log( pmhc_group["Assay"]["Quantitative measurement"])))) qualitative = pmhc_group["Assay"]["Qualitative Measure"] columns["percent_positive"].append( qualitative.str.startswith("Positive").mean()) columns["count"].append( pmhc_group["Assay"]["Quantitative measurement"].count()) assay_dataframes[(assay_group, assay_method)] = pd.DataFrame( columns, columns=[ "mhc", "peptide", "value", "percent_positive", "count"]) print("# distinct pMHC entries: %d" % len(columns["mhc"])) with open(OUTPUT_PATH, "wb") as f: pickle.dump(assay_dataframes, f, pickle.HIGHEST_PROTOCOL)