diff --git a/downloads-generation/models_class1_pan_variants/GENERATE.sh b/downloads-generation/models_class1_pan_variants/GENERATE.sh index a59365cc3ec37f68516cf40cded8755cb65ab823..82994301bc59552cd358aa4c468eb8cbd4d4669c 100755 --- a/downloads-generation/models_class1_pan_variants/GENERATE.sh +++ b/downloads-generation/models_class1_pan_variants/GENERATE.sh @@ -66,10 +66,11 @@ then python generate_hyperparameters.production.py > hyperparameters.production.yaml python generate_hyperparameters.py hyperparameters.production.yaml no_pretrain > hyperparameters.no_pretrain.yaml python generate_hyperparameters.py hyperparameters.no_pretrain.yaml single_hidden > hyperparameters.single_hidden_no_pretrain.yaml + python generate_hyperparameters.py hyperparameters.compact_peptide.yaml compact_peptide > hyperparameters.compact_peptide.yaml python normalize_allele_names.py "$(mhcflurry-downloads path allele_sequences)/class1_pseudosequences.csv" --out allele_sequences.34mer.csv fi -for kind in 34mer_sequence single_hidden_no_pretrain no_pretrain +for kind in 34mer_sequence single_hidden_no_pretrain no_pretrain compact_peptide do CONTINUE_INCOMPLETE_ARGS="" if [ "$2" == "continue-incomplete" ] && [ -d "models.unselected.${kind}" ] @@ -100,7 +101,7 @@ done echo "Done training. Beginning model selection." -for kind in single_hidden_no_pretrain no_pretrain 34mer_sequence +for kind in single_hidden_no_pretrain no_pretrain 34mer_sequence compact_peptide do MODELS_DIR="models.unselected.${kind}" mhcflurry-class1-select-pan-allele-models \ diff --git a/downloads-generation/models_class1_pan_variants/generate_hyperparameters.py b/downloads-generation/models_class1_pan_variants/generate_hyperparameters.py index 75a363ac076887a598b1f00b78833cf26b344d06..8d9ea9bb2bf585672e13e26b41e1183ddbe745fb 100644 --- a/downloads-generation/models_class1_pan_variants/generate_hyperparameters.py +++ b/downloads-generation/models_class1_pan_variants/generate_hyperparameters.py @@ -14,7 +14,7 @@ parser.add_argument( help="Production (i.e. standard) hyperparameters grid.") parser.add_argument( "kind", - choices=('single_hidden', 'no_pretrain'), + choices=('single_hidden', 'no_pretrain', 'compact_peptide'), help="Hyperameters variant to output") args = parser.parse_args(argv[1:]) @@ -38,9 +38,16 @@ def transform_to_no_pretrain(hyperparameters): return [result] +def transform_to_compact_peptide(hyperparameters): + result = deepcopy(hyperparameters) + result['peptide_encoding']['alignment_method'] = 'left_pad_right_pad' + return [result] + + TRANSFORMS={ "single_hidden": transform_to_single_hidden, "no_pretrain": transform_to_no_pretrain, + "compact_peptide": transform_to_compact_peptide, } transform = TRANSFORMS[args.kind]