From e7b34afbb4f09f66e0aa14b9a41e8d2eca8bece6 Mon Sep 17 00:00:00 2001 From: Alex Rubinsteyn <alex.rubinsteyn@gmail.com> Date: Wed, 4 May 2016 17:16:16 -0400 Subject: [PATCH] small fix to training script --- script/mhcflurry-train-class1-allele-specific-models.py | 9 ++------- test/test_neural_nets.py | 4 ++-- 2 files changed, 4 insertions(+), 9 deletions(-) diff --git a/script/mhcflurry-train-class1-allele-specific-models.py b/script/mhcflurry-train-class1-allele-specific-models.py index 5c0c8748..26970ff6 100755 --- a/script/mhcflurry-train-class1-allele-specific-models.py +++ b/script/mhcflurry-train-class1-allele-specific-models.py @@ -46,13 +46,8 @@ from keras.optimizers import RMSprop from mhcflurry.common import normalize_allele_name from mhcflurry.data import load_allele_datasets from mhcflurry.class1_binding_predictor import Class1BindingPredictor -from mhcflurry.class1_allele_specific_hyperparameters import ( - add_hyperparameter_arguments_to_parser -) -from mhcflurry.paths import ( - CLASS1_MODEL_DIRECTORY, - CLASS1_DATA_DIRECTORY -) +from mhcflurry.feedforward_hyperparameters import add_hyperparameter_arguments_to_parser +from mhcflurry.paths import (CLASS1_MODEL_DIRECTORY, CLASS1_DATA_DIRECTORY) from mhcflurry.imputation import create_imputed_datasets, imputer_from_name CSV_FILENAME = "combined_human_class1_dataset.csv" diff --git a/test/test_neural_nets.py b/test/test_neural_nets.py index 38c84441..5d4380d0 100644 --- a/test/test_neural_nets.py +++ b/test/test_neural_nets.py @@ -17,7 +17,7 @@ def test_make_embedding_network_properties(): optimizer=RMSprop(lr=0.7, rho=0.9, epsilon=1e-6)) eq_(nn.layers[0].input_dim, 3) eq_(nn.loss, mse) - eq_(nn.optimizer.lr, 0.7) + eq_(nn.optimizer.lr.eval(), 0.7) print(nn.layers) # embedding + flatten + (dense->activation) * hidden layers and last layer eq_(len(nn.layers), 2 + 2 * (1 + len(layer_sizes))) @@ -34,7 +34,7 @@ def test_make_hotshot_network_properties(): optimizer=RMSprop(lr=0.7, rho=0.9, epsilon=1e-6)) eq_(nn.layers[0].input_dim, 6) eq_(nn.loss, mse) - eq_(nn.optimizer.lr, 0.7) + eq_(nn.optimizer.lr.eval(), 0.7) print(nn.layers) eq_(len(nn.layers), 2 + 2 * (1 + len(layer_sizes))) -- GitLab