diff --git a/mhcflurry/antigen_presentation/presentation_component_models/presentation_component_model.py b/mhcflurry/antigen_presentation/presentation_component_models/presentation_component_model.py index 308cde88c5a4e32fcbd5a794e395a72b6cc10238..52fe54a2fc93eb277d3c2b1e784fab827af382ab 100644 --- a/mhcflurry/antigen_presentation/presentation_component_models/presentation_component_model.py +++ b/mhcflurry/antigen_presentation/presentation_component_models/presentation_component_model.py @@ -233,7 +233,8 @@ class PresentationComponentModel(object): return_value = result_df[columns] if self.cached_predictions is not None: self.cached_predictions[cache_key] = return_value - return return_value + return dict( + (col, return_value[col].values) for col in self.column_names()) def clone(self): """ diff --git a/mhcflurry/antigen_presentation/presentation_model.py b/mhcflurry/antigen_presentation/presentation_model.py index f64b5000bb21f438235e3754c6f7ce0586cc7d34..fe8664e9ca6b68dd52ca6c059c49f39ea0c6d414 100644 --- a/mhcflurry/antigen_presentation/presentation_model.py +++ b/mhcflurry/antigen_presentation/presentation_model.py @@ -188,7 +188,7 @@ class PresentationModel(object): model_input_training_hits_df) self.trained_component_models[-1].append((sub_model,)) predictions = sub_model.predict(hits_and_decoys_df) - for (col, values) in predictions.iteritems(): + for (col, values) in predictions.items(): hits_and_decoys_df[col] = values final_predictor = self.fit_final_predictor(hits_and_decoys_df) self.presentation_models_predictors.append(final_predictor)