diff --git a/mhcflurry/train_allele_specific_models_command.py b/mhcflurry/train_allele_specific_models_command.py index 40717a7d76b30beb45797b727eb975ceb416fcbb..dd180995443112238b6b43dd2f4e22d1d0085161 100644 --- a/mhcflurry/train_allele_specific_models_command.py +++ b/mhcflurry/train_allele_specific_models_command.py @@ -67,11 +67,6 @@ parser.add_argument( metavar="N", default=50, help="Train models for alleles with >=N measurements.") -parser.add_argument( - "--only-quantitative", - action="store_true", - default=False, - help="Use only quantitative training data") parser.add_argument( "--ignore-inequalities", action="store_true", @@ -155,17 +150,13 @@ def run(argv=sys.argv[1:]): ] print("Subselected to 8-15mers: %s" % (str(df.shape))) - if args.only_quantitative: - df = df.loc[ - df.measurement_type == "quantitative" - ] - print("Subselected to quantitative: %s" % (str(df.shape))) - if args.ignore_inequalities and "measurement_inequality" in df.columns: print("Dropping measurement_inequality column") del df["measurement_inequality"] - allele_counts = df.allele.value_counts() + # Allele counts are in terms of quantitative data only. + allele_counts = ( + df.loc[df.measurement_type == "quantitative"].allele.value_counts()) if args.allele: alleles = [normalize_allele_name(a) for a in args.allele]