diff --git a/mhcflurry/class1_neural_network.py b/mhcflurry/class1_neural_network.py index ffb3435bf810b5bca11ee91354cc71a6d1d23f97..e434e1b21422b1db1d4c1636076151bafd56ea34 100644 --- a/mhcflurry/class1_neural_network.py +++ b/mhcflurry/class1_neural_network.py @@ -519,14 +519,16 @@ class Class1NeuralNetwork(object): use_multiprocessing=False, workers=1, validation_data=(validation_x_dict, validation_y_dict), + verbose=verbose, callbacks=[keras.callbacks.EarlyStopping( monitor="val_loss", patience=patience, - verbose=1)] + verbose=verbose)] ) if verbose > 0: print("fit_generator completed in %0.2f sec (%d total points)" % ( time.time() - start, yielded_values_box[0])) + return result def fit( diff --git a/mhcflurry/parallelism.py b/mhcflurry/parallelism.py index 88913986287c7694ceef2e506196612eb330a20e..0e652a964908a2e55f1fdae9e831250fca559b03 100644 --- a/mhcflurry/parallelism.py +++ b/mhcflurry/parallelism.py @@ -221,7 +221,11 @@ def worker_init_entry_point( def worker_init(keras_backend=None, gpu_device_nums=None, worker_log_dir=None): if worker_log_dir: sys.stderr = sys.stdout = open( - os.path.join(worker_log_dir, "LOG-worker.%d.txt" % os.getpid()), "w") + os.path.join(worker_log_dir, "LOG-" + "" + "" + "" + "worker.%d.txt" % os.getpid()), "w") # Each worker needs distinct random numbers numpy.random.seed()