From a9a88a148935be4b807036f6c008383f5a860bcd Mon Sep 17 00:00:00 2001 From: Tim O'Donnell <timodonnell@gmail.com> Date: Mon, 24 Jun 2019 12:21:57 -0400 Subject: [PATCH] fix --- mhcflurry/class1_neural_network.py | 1 + mhcflurry/custom_loss.py | 4 ++-- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/mhcflurry/class1_neural_network.py b/mhcflurry/class1_neural_network.py index 92cf8b27..c1f8e106 100644 --- a/mhcflurry/class1_neural_network.py +++ b/mhcflurry/class1_neural_network.py @@ -718,6 +718,7 @@ class Class1NeuralNetwork(object): y_values, ]), } + adjusted_inequalities_with_random_negatives = None if sample_weights is not None: sample_weights_with_random_negatives = numpy.concatenate([ numpy.ones(int(num_random_negative.sum())), diff --git a/mhcflurry/custom_loss.py b/mhcflurry/custom_loss.py index 641fd099..eabdd130 100644 --- a/mhcflurry/custom_loss.py +++ b/mhcflurry/custom_loss.py @@ -82,7 +82,7 @@ class MSEWithInequalities(Loss): def encode_y(y, inequalities=None): y = array(y, dtype="float32") if isnan(y).any(): - raise ValueError("y contains NaN") + raise ValueError("y contains NaN: %s" % str(y)) if (y > 1.0).any(): raise ValueError("y contains values > 1.0") if (y < 0.0).any(): @@ -141,7 +141,7 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss): def encode_y(y, inequalities=None, output_indices=None): y = array(y, dtype="float32") if isnan(y).any(): - raise ValueError("y contains NaN") + raise ValueError("y contains NaN: %s" % str(y)) if (y > 1.0).any(): raise ValueError("y contains values > 1.0") if (y < 0.0).any(): -- GitLab