diff --git a/mhcflurry/class1_neural_network.py b/mhcflurry/class1_neural_network.py index 92cf8b27ebe74e3924cfe891f139a35cc0a84c51..c1f8e106820a47dcddd76ecae350191f64716121 100644 --- a/mhcflurry/class1_neural_network.py +++ b/mhcflurry/class1_neural_network.py @@ -718,6 +718,7 @@ class Class1NeuralNetwork(object): y_values, ]), } + adjusted_inequalities_with_random_negatives = None if sample_weights is not None: sample_weights_with_random_negatives = numpy.concatenate([ numpy.ones(int(num_random_negative.sum())), diff --git a/mhcflurry/custom_loss.py b/mhcflurry/custom_loss.py index 641fd09969700670b22128059ef078151cf7d30e..eabdd130a99dcbd828b58a9f2c327832bbf18eeb 100644 --- a/mhcflurry/custom_loss.py +++ b/mhcflurry/custom_loss.py @@ -82,7 +82,7 @@ class MSEWithInequalities(Loss): def encode_y(y, inequalities=None): y = array(y, dtype="float32") if isnan(y).any(): - raise ValueError("y contains NaN") + raise ValueError("y contains NaN: %s" % str(y)) if (y > 1.0).any(): raise ValueError("y contains values > 1.0") if (y < 0.0).any(): @@ -141,7 +141,7 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss): def encode_y(y, inequalities=None, output_indices=None): y = array(y, dtype="float32") if isnan(y).any(): - raise ValueError("y contains NaN") + raise ValueError("y contains NaN: %s" % str(y)) if (y > 1.0).any(): raise ValueError("y contains values > 1.0") if (y < 0.0).any():