diff --git a/test/test_class1_affinity_predictor.py b/test/test_class1_affinity_predictor.py index 320b3961beb6e5058463f7aabdf087762110036b..8532b76a3662581f4e439b136af5ddd42def4a03 100644 --- a/test/test_class1_affinity_predictor.py +++ b/test/test_class1_affinity_predictor.py @@ -96,6 +96,7 @@ def test_a1_known_epitopes_in_newly_trained_model(): allele=allele, peptides=df.peptide.values, affinities=df.measurement_value.values, + verbose=0, ) predict_and_check("HLA-A*01:01", "EVDPIGHLY", predictor=predictor) @@ -157,6 +158,7 @@ def test_class1_affinity_predictor_a0205_memorize_training_data(): allele=allele, peptides=df.peptide.values, affinities=df.measurement_value.values, + verbose=0, ) predictor.calibrate_percentile_ranks(num_peptides_per_length=1000) ic50_pred = predictor.predict(df.peptide.values, allele=allele) diff --git a/test/test_class1_neural_network.py b/test/test_class1_neural_network.py index da83940bf4e35595a51d54c969a25760099eda0d..36c023781f98af3773c37973ea19a3ff655c94ec 100644 --- a/test/test_class1_neural_network.py +++ b/test/test_class1_neural_network.py @@ -13,6 +13,7 @@ from mhcflurry.class1_neural_network import Class1NeuralNetwork from mhcflurry.downloads import get_path from mhcflurry.common import random_peptides + def test_class1_neural_network_a0205_training_accuracy(): # Memorize the dataset. hyperparameters = dict( @@ -80,7 +81,7 @@ def test_class1_neural_network_a0205_training_accuracy(): dense_layer_l1_regularization=0.0, dropout_probability=0.0) predictor2 = Class1NeuralNetwork(**hyperparameters2) - predictor2.fit(df.peptide.values, df.measurement_value.values) + predictor2.fit(df.peptide.values, df.measurement_value.values, verbose=0) eq_(predictor.network().to_json(), predictor2.network().to_json())