diff --git a/mhcflurry/custom_loss.py b/mhcflurry/custom_loss.py index 8bd1b9537ce868f71f1a27bea5739fb98bad32cf..35440ca09fdf3462f4fae3ad2287524b9ce206f2 100644 --- a/mhcflurry/custom_loss.py +++ b/mhcflurry/custom_loss.py @@ -130,9 +130,6 @@ class MSEWithInequalitiesAndMultipleOutputs(object): def loss(y_true, y_pred): from keras import backend as K - #y_true = K.print_tensor(y_true, "y_true1") - #y_pred = K.print_tensor(y_pred, "y_pred1") - y_true = K.flatten(y_true) output_indices = y_true // 10 @@ -143,8 +140,6 @@ class MSEWithInequalitiesAndMultipleOutputs(object): ordinals = K.arange(K.shape(y_true)[0]) flattened_indices = ( ordinals * y_pred.shape[1] + K.cast(output_indices, "int32")) - import tensorflow - #flattened_indices = tensorflow.Print(flattened_indices, [flattened_indices], "flattened_indices", summarize=1000) updated_y_pred = K.gather(K.flatten(y_pred), flattened_indices) # Alternative implementation using tensorflow, which could be used if diff --git a/test/test_multi_output.py b/test/test_multi_output.py index 31e75b0d7a4132881f4d4f0acaea42462f100e10..974316271574e1aa0ee6f06929bb69a95dc7ac1a 100644 --- a/test/test_multi_output.py +++ b/test/test_multi_output.py @@ -20,7 +20,7 @@ def test_multi_output(): loss="custom:mse_with_inequalities_and_multiple_outputs", activation="tanh", layer_sizes=[16], - max_epochs=500, + max_epochs=50, minibatch_size=250, random_negative_rate=0.0, random_negative_constant=0.0,