diff --git a/mhcflurry/feedforward.py b/mhcflurry/feedforward.py index fa37df231c5ac3a3f0a4e4d491ab32453ad0b3a9..7f09c73def7612508d33f44981663b7f8aa785f9 100644 --- a/mhcflurry/feedforward.py +++ b/mhcflurry/feedforward.py @@ -81,11 +81,13 @@ def make_network( model.add(Embedding( input_dim=embedding_input_dim, output_dim=embedding_output_dim, + input_length=input_size, init=init)) model.add(Flatten()) input_size = input_size * embedding_output_dim layer_sizes = (input_size,) + tuple(layer_sizes) + for i, dim in enumerate(layer_sizes): if i == 0: # input is only conceptually a layer of the network, diff --git a/mhcflurry/mhc1_binding_predictor.py b/mhcflurry/mhc1_binding_predictor.py index baa567a988478bbfa19543d2ff6c3f940daea63c..983a8293ab96e85def14294b629f4e81772a1326 100644 --- a/mhcflurry/mhc1_binding_predictor.py +++ b/mhcflurry/mhc1_binding_predictor.py @@ -59,6 +59,7 @@ class Mhc1BindingPredictor(object): else: filename = self.allele + ".hdf" path = join(model_directory, filename) + print("HDF path: %s" % path) if not exists(path): raise ValueError("Unsupported allele: %s" % ( original_allele_name,)) @@ -71,7 +72,9 @@ class Mhc1BindingPredictor(object): init=INITIALIZATION_METHOD, dropout_probability=DROPOUT_PROBABILITY, compile_for_training=True) + print("before", len(self.model.get_weights()), self.model.get_weights()[0][0]) self.model.load_weights(path) + print("after", len(self.model.get_weights()), self.model.get_weights()[0][0]) _allele_model_cache[self.allele] = self.model def __repr__(self):