diff --git a/mhcflurry/class1_ligandome_neural_network.py b/mhcflurry/class1_presentation_neural_network.py similarity index 99% rename from mhcflurry/class1_ligandome_neural_network.py rename to mhcflurry/class1_presentation_neural_network.py index b61a0a56371ffebf2f47c812c1752df35ebacbe6..db3a25350476eabf937b8b29cceaeb6a65e188fa 100644 --- a/mhcflurry/class1_ligandome_neural_network.py +++ b/mhcflurry/class1_presentation_neural_network.py @@ -23,7 +23,7 @@ from .custom_loss import ( ZeroLoss) -class Class1LigandomeNeuralNetwork(object): +class Class1PresentationNeuralNetwork(object): network_hyperparameter_defaults = HyperparameterDefaults( allele_amino_acid_encoding="BLOSUM62", peptide_encoding={ diff --git a/mhcflurry/class1_ligandome_predictor.py b/mhcflurry/class1_presentation_predictor.py similarity index 98% rename from mhcflurry/class1_ligandome_predictor.py rename to mhcflurry/class1_presentation_predictor.py index 7e36266831901d03d773c659c743dd7a65bf13c3..1471ad974dba121e5a6b07264c99f33febf32fcf 100644 --- a/mhcflurry/class1_ligandome_predictor.py +++ b/mhcflurry/class1_presentation_predictor.py @@ -33,7 +33,7 @@ from .custom_loss import ( ZeroLoss) -class Class1LigandomePredictor(object): +class Class1PresentationPredictor(object): def __init__( self, class1_ligandome_neural_networks, @@ -229,7 +229,7 @@ class Class1LigandomePredictor(object): not exist it will be created. The serialization format consists of a file called "manifest.csv" with - the configurations of each Class1LigandomeNeuralNetwork, along with + the configurations of each Class1PresentationNeuralNetwork, along with per-network files giving the model weights. Parameters @@ -321,8 +321,6 @@ class Class1LigandomePredictor(object): """ if models_dir is None: models_dir = get_default_class1_models_dir() - if optimization_level is None: - optimization_level = OPTIMIZATION_LEVEL manifest_path = join(models_dir, "manifest.csv") manifest_df = pandas.read_csv(manifest_path, nrows=max_models) diff --git a/test/test_class1_ligandome_predictor.py b/test/test_class1_presentation_predictor.py similarity index 96% rename from test/test_class1_ligandome_predictor.py rename to test/test_class1_presentation_predictor.py index 214a91a8e690f2a66580f0ee1fabb7f5bf393613..768d270a42df15df2fbdfa0341b5eb6b14951a03 100644 --- a/test/test_class1_ligandome_predictor.py +++ b/test/test_class1_presentation_predictor.py @@ -6,7 +6,7 @@ Idea: possiblility is DLA-88*501:01 but human would be better - generate synethetic multi-allele MS by combining single-allele MS for differnet alleles, including the selected allele -- train ligandome predictor based on the no-ms pan-allele models on theis +- train presentation predictor based on the no-ms pan-allele models on theis synthetic dataset - see if the pan-allele predictor learns the "correct" motif for the selected allele, i.e. updates to become more similar to the with-ms pan allele predictor. @@ -33,7 +33,7 @@ from sklearn.metrics import roc_auc_score from mhcflurry import Class1AffinityPredictor, Class1NeuralNetwork from mhcflurry.allele_encoding import MultipleAlleleEncoding -from mhcflurry.class1_ligandome_neural_network import Class1LigandomeNeuralNetwork +from mhcflurry.class1_presentation_neural_network import Class1PresentationNeuralNetwork from mhcflurry.encodable_sequences import EncodableSequences from mhcflurry.downloads import get_path from mhcflurry.regression_target import from_ic50 @@ -300,7 +300,7 @@ def test_real_data_multiallelic_refinement(max_epochs=10): combined_train_df = pandas.concat([multi_train_df, pan_sub_train_df]) - ligandome_predictor = Class1LigandomeNeuralNetwork( + presentation_predictor = Class1PresentationNeuralNetwork( pan_predictor, auxiliary_input_features=[], max_ensemble_size=1, @@ -311,7 +311,7 @@ def test_real_data_multiallelic_refinement(max_epochs=10): random_negative_rate=1.0) pre_predictions = from_ic50( - ligandome_predictor.predict( + presentation_predictor.predict( output="affinities", peptides=combined_train_df.peptide.values, alleles=allele_encoding)) @@ -338,7 +338,7 @@ def test_real_data_multiallelic_refinement(max_epochs=10): update_motifs() print("Fitting...") - ligandome_predictor.fit( + presentation_predictor.fit( peptides=combined_train_df.peptide.values, labels=combined_train_df.label.values, allele_encoding=allele_encoding, @@ -416,7 +416,7 @@ def test_synthetic_allele_refinement_with_affinity_data(max_epochs=10): del affinity_train_df["measurement_value"] affinity_train_df["is_affinity"] = True - predictor = Class1LigandomeNeuralNetwork( + predictor = Class1PresentationNeuralNetwork( PAN_ALLELE_PREDICTOR_NO_MASS_SPEC, auxiliary_input_features=["gene"], max_ensemble_size=1, @@ -475,7 +475,7 @@ def test_synthetic_allele_refinement_with_affinity_data(max_epochs=10): metric_rows = [] def progress(): - (_, ligandome_prediction, affinities_predictions) = ( + (_, presentation_prediction, affinities_predictions) = ( predictor.predict( output="all", peptides=mms_train_df.peptide.values, @@ -483,7 +483,7 @@ def test_synthetic_allele_refinement_with_affinity_data(max_epochs=10): affinities_predictions = from_ic50(affinities_predictions) for (kind, predictions) in [ ("affinities", affinities_predictions), - ("ligandome", ligandome_prediction)]: + ("presentation", presentation_prediction)]: mms_train_df["max_prediction"] = predictions.max(1) mms_train_df["predicted_allele"] = pandas.Series(alleles).loc[ @@ -520,7 +520,7 @@ def test_synthetic_allele_refinement_with_affinity_data(max_epochs=10): update_motifs() - return (ligandome_prediction, auc) + return (presentation_prediction, auc) print("Pre fitting:") progress() @@ -616,7 +616,7 @@ def test_synthetic_allele_refinement(max_epochs=10): train_df = pandas.concat([hits_df, decoys_df], ignore_index=True) - predictor = Class1LigandomeNeuralNetwork( + predictor = Class1PresentationNeuralNetwork( PAN_ALLELE_PREDICTOR_NO_MASS_SPEC, max_ensemble_size=1, max_epochs=max_epochs, @@ -668,7 +668,7 @@ def test_synthetic_allele_refinement(max_epochs=10): metric_rows = [] def progress(): - (_, ligandome_prediction, affinities_predictions) = ( + (_, presentation_prediction, affinities_predictions) = ( predictor.predict( output="all", peptides=train_df.peptide.values, @@ -676,7 +676,7 @@ def test_synthetic_allele_refinement(max_epochs=10): affinities_predictions = from_ic50(affinities_predictions) for (kind, predictions) in [ ("affinities", affinities_predictions), - ("ligandome", ligandome_prediction)]: + ("presentation", presentation_prediction)]: train_df["max_prediction"] = predictions.max(1) train_df["predicted_allele"] = pandas.Series(alleles).loc[ @@ -713,7 +713,7 @@ def test_synthetic_allele_refinement(max_epochs=10): update_motifs() - return (ligandome_prediction, auc) + return (presentation_prediction, auc) print("Pre fitting:") progress() @@ -798,7 +798,7 @@ def test_batch_generator(sample_rate=0.1): combined_train_df = pandas.concat( [multi_train_df, pan_sub_train_df], ignore_index=True, sort=True) - ligandome_predictor = Class1LigandomeNeuralNetwork( + presentation_predictor = Class1PresentationNeuralNetwork( pan_predictor, auxiliary_input_features=[], max_ensemble_size=1, @@ -809,7 +809,7 @@ def test_batch_generator(sample_rate=0.1): min_delta=0.0, random_negative_rate=1.0) - fit_results = ligandome_predictor.fit( + fit_results = presentation_predictor.fit( peptides=combined_train_df.peptide.values, labels=combined_train_df.label.values, allele_encoding=allele_encoding,