diff --git a/README.md b/README.md index e2257d7f7c0ed766fbbdee006d3e9d9501cc2b04..395107b6aa35f5adebac1d910ee023fe6c86aa01 100644 --- a/README.md +++ b/README.md @@ -1,15 +1,16 @@ [](https://travis-ci.org/hammerlab/mhcflurry) [](https://coveralls.io/github/hammerlab/mhcflurry?branch=master) # mhcflurry -Open source peptide/MHC I binding affinity prediction. Competitive accuracy, fast, -[documented](http://www.hammerlab.org/mhcflurry/). +([MHC I](https://en.wikipedia.org/wiki/Major_histocompatibility_complex) ligand +prediction package with competitive accuracy and a fast and [documented](http://www.hammerlab.org/mhcflurry/) +implementation. MHCflurry supports Class I peptide/MHC binding affinity prediction using ensembles of allele-specific models. You can fit MHCflurry models to your own data or download models that we fit to data from [IEDB](http://www.iedb.org/home_v3.php) and [Kim 2014](http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-241). -MHCflurry supports Python versions 2.7 and 3.4+. It uses the [keras](https://keras.io) +MHCflurry runs on Python versions 2.7 and 3.4+. It uses the [keras](https://keras.io) neural network library via either the Tensorflow or Theano backends. GPUs may optionally be used for a generally modest speed improvement.