From 5dc036afc750eda004e9f43b0be9990e69f01edd Mon Sep 17 00:00:00 2001 From: Tim O'Donnell <timodonnell@gmail.com> Date: Tue, 19 Dec 2017 18:36:36 -0500 Subject: [PATCH] update readme --- docs/Makefile | 3 ++- docs/_readme.md | 23 +++++++++++------------ docs/intro.rst | 8 ++++---- 3 files changed, 17 insertions(+), 17 deletions(-) diff --git a/docs/Makefile b/docs/Makefile index 9cc3f347..89582cd0 100644 --- a/docs/Makefile +++ b/docs/Makefile @@ -59,8 +59,9 @@ rst: --out-models-architecture-png _models_architecture.png \ --out-models-info-rst _models_info.rst \ --out-models-supported-alleles-rst _models_supported_alleles.rst + tail -n +2 intro.rst > intro.first_two_lines_removed.rst pandoc -f rst -t markdown_github -B readme_header.md --base-header-level 2 \ - intro.rst \ + intro.first_two_lines_removed.rst \ commandline_tutorial.rst \ python_tutorial.rst \ _models_supported_alleles.rst \ diff --git a/docs/_readme.md b/docs/_readme.md index 00d2a726..a86a417b 100644 --- a/docs/_readme.md +++ b/docs/_readme.md @@ -7,10 +7,9 @@ Open source peptide/MHC I binding affinity prediction <!-- DO NOT EDIT README.md, EDIT FILES in docs/ INSTEAD --> <!-- Then run "make rst" in the docs/ directory to regenerate --> -Introduction and setup ----------------------- +------------------------------------------------------------------------ -MHCflurry is a peptide/MHC I binding affinity prediction package written in Python. It aims to provide state of the art accuracy with a documented, fast, and open source implementation. +MHCflurry is a Python package for peptide/MHC I binding affinity prediction. It provides competitive accuracy with a fast, documented, open source implementation. MHCflurry users may download trained predictors fit to affinity measurements deposited in IEDB. See the "downloads\_generation/models\_class1" directory in the repository for the workflow used to train these predictors. It is also easy for users with their own data to fit their own models. @@ -22,7 +21,8 @@ If you find MHCflurry useful in your research please cite: > O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC binding affinity prediction. bioRxiv. Available at: <http://www.biorxiv.org/content/early/2017/08/09/174243>. -### Installation (pip) +Installation (pip) +------------------ Install the package: @@ -37,7 +37,8 @@ From a checkout you can run the unit tests with: pip install nose nosetests . -### Using conda +Using conda +----------- You can alternatively get up and running with a [conda](https://conda.io/docs/) environment as follows. Some users have reported that this can avoid problems installing tensorflow. @@ -49,10 +50,10 @@ Then continue as above: pip install mhcflurry mhcflurry-downloads fetch -Using MHCflurry from the command-line -------------------------------------- +### Using MHCflurry from the command-line -### mhcflurry-predict +mhcflurry-predict +----------------- The `mhcflurry-predict` command generates predictions from the command-line. @@ -73,13 +74,11 @@ Your exact predictions may vary slightly from these (up to about 1 nM) depending You can also specify the input and output as CSV files. Run `mhcflurry-predict -h` for details. -Using MHCflurry as a library ----------------------------- +### Using MHCflurry as a library xxx -Supported peptides and alleles ------------------------------- +### Supported peptides and alleles Models released with the current version of MHCflurry (1.0.0) support peptides of length 8-15 and the following 124 alleles: diff --git a/docs/intro.rst b/docs/intro.rst index 0ed0cff9..e6268f02 100644 --- a/docs/intro.rst +++ b/docs/intro.rst @@ -1,11 +1,11 @@ Introduction and setup ======================= -MHCflurry is a peptide/MHC I binding affinity prediction package written in -Python. It aims to provide state of the art accuracy with a documented, fast, and -open source implementation. +MHCflurry is a Python package for peptide/MHC I binding affinity prediction. It +provides competitive accuracy with a fast, documented, open source +implementation. -MHCflurry users may download trained predictors fit to affinity measurements +We provide downloadable MHCflurry predictors fit to affinity measurements deposited in IEDB. See the "downloads_generation/models_class1" directory in the repository for the workflow used to train these predictors. It is also easy for users with their own data to fit their own models. -- GitLab