diff --git a/downloads-generation/models_class1_presentation/GENERATE.WITH_HPC_CLUSTER.sh b/downloads-generation/models_class1_presentation/GENERATE.WITH_HPC_CLUSTER.sh deleted file mode 100755 index 53125eb7bec329ecbbd0d230b8afe809c1064204..0000000000000000000000000000000000000000 --- a/downloads-generation/models_class1_presentation/GENERATE.WITH_HPC_CLUSTER.sh +++ /dev/null @@ -1 +0,0 @@ -bash GENERATE.sh cluster diff --git a/downloads-generation/models_class1_presentation/GENERATE.sh b/downloads-generation/models_class1_presentation/GENERATE.sh index 5443356e8b4f4108c0f223ae0c32b59a0defe3f7..81bcfaad047233bbb82580f8f9d9529f6ab1ee4c 100755 --- a/downloads-generation/models_class1_presentation/GENERATE.sh +++ b/downloads-generation/models_class1_presentation/GENERATE.sh @@ -80,7 +80,7 @@ else time python make_benchmark.py \ --hits "$(pwd)/hits_with_tpm.csv.bz2" \ --proteome-peptides "$(mhcflurry-downloads path data_mass_spec_benchmark)/proteome_peptides.all.csv.bz2" \ - --decoys-per-hit 99 \ + --decoys-per-hit 2 \ --exclude-pmid 31844290 31495665 31154438 \ --only-format MULTIALLELIC \ --out "$(pwd)/train_data.csv" diff --git a/downloads-generation/models_class1_presentation/cluster_submit_script_header.mssm_hpc.lsf b/downloads-generation/models_class1_presentation/cluster_submit_script_header.mssm_hpc.lsf deleted file mode 100644 index b1eec1a69a81d2c49a8feea9ec61c222eead5480..0000000000000000000000000000000000000000 --- a/downloads-generation/models_class1_presentation/cluster_submit_script_header.mssm_hpc.lsf +++ /dev/null @@ -1,44 +0,0 @@ -#!/bin/bash -#BSUB -J MHCf-{work_item_num} # Job name -#BSUB -P acc_nkcancer # allocation account or Unix group -#BSUB -q gpu # queue -#BSUB -R rusage[ngpus_excl_p=1] # 1 exclusive GPU -#BSUB -R span[hosts=1] # one node -#BSUB -n 1 # number of compute cores -#BSUB -W 10:00 # walltime in HH:MM -#BSUB -R rusage[mem=20000] # mb memory requested -#BSUB -o {work_dir}/%J.stdout # output log (%J : JobID) -#BSUB -eo {work_dir}/STDERR # error log -#BSUB -L /bin/bash # Initialize the execution environment -# - -set -e -set -x - -echo "Subsequent stderr output redirected to stdout" >&2 -exec 2>&1 - -export TMPDIR=/local/JOBS/mhcflurry-{work_item_num} -export PATH=$HOME/.conda/envs/py36b/bin/:$PATH -export PYTHONUNBUFFERED=1 -export KMP_SETTINGS=1 - -free -m - -module add cuda/10.0.130 -module list - -export CUDNN_HOME=/hpc/users/odonnt02/oss/cudnn/cuda -export LD_LIBRARY_PATH=$CUDNN_HOME/lib64:$LD_LIBRARY_PATH -export CMAKE_LIBRARY_PATH=$CUDNN_HOME/lib64:$CMAKE_LIBRARY_PATH -export INCLUDE_PATH=$CUDNN_HOME/include:$INCLUDE_PATH -export C_INCLUDE_PATH=$CUDNN_HOME/include:$C_INCLUDE_PATH -export CPLUS_INCLUDE_PATH=$CUDNN_HOME/include:$CPLUS_INCLUDE_PATH -export CMAKE_INCLUDE_PATH=$CUDNN_HOME/include:$CMAKE_INCLUDE_PATH - -python -c 'import tensorflow as tf ; print("GPU AVAILABLE" if tf.test.is_gpu_available() else "GPU NOT AVAILABLE")' - -env - -cd {work_dir} - diff --git a/downloads-generation/models_class1_presentation/generate_hyperparameters.py b/downloads-generation/models_class1_presentation/generate_hyperparameters.py deleted file mode 100644 index 890b814bc070962fa4664eb9eab57db29a00ed3e..0000000000000000000000000000000000000000 --- a/downloads-generation/models_class1_presentation/generate_hyperparameters.py +++ /dev/null @@ -1,52 +0,0 @@ -""" -Generate grid of hyperparameters -""" -from __future__ import print_function -from sys import stdout, stderr -from copy import deepcopy -from yaml import dump - -base_hyperparameters = dict( - convolutional_filters=64, - convolutional_kernel_size=8, - convolutional_kernel_l1_l2=(0.00, 0.0), - flanking_averages=True, - n_flank_length=15, - c_flank_length=15, - post_convolutional_dense_layer_sizes=[], - minibatch_size=512, - dropout_rate=0.5, - convolutional_activation="relu", - patience=20, - learning_rate=0.001) - -grid = [] - - -def hyperparrameters_grid(): - for learning_rate in [0.001]: - for convolutional_activation in ["tanh", "relu"]: - for convolutional_filters in [256, 512]: - for flanking_averages in [True]: - for convolutional_kernel_size in [11, 13, 15, 17]: - for l1 in [0.0, 1e-6]: - for s in [[8], [16]]: - for d in [0.3, 0.5]: - new = deepcopy(base_hyperparameters) - new["learning_rate"] = learning_rate - new["convolutional_activation"] = convolutional_activation - new["convolutional_filters"] = convolutional_filters - new["flanking_averages"] = flanking_averages - new["convolutional_kernel_size"] = convolutional_kernel_size - new["convolutional_kernel_l1_l2"] = (l1, 0.0) - new["post_convolutional_dense_layer_sizes"] = s - new["dropout_rate"] = d - yield new - - -for new in hyperparrameters_grid(): - if new not in grid: - grid.append(new) - -print("Hyperparameters grid size: %d" % len(grid), file=stderr) -dump(grid, stdout)