diff --git a/mhcflurry/class1_affinity_predictor.py b/mhcflurry/class1_affinity_predictor.py index 59e9b7acc366ffc11c814e796915a880b13dbb3b..d6410b49802dcd7e2c1b26cb5f948cb09e34e868 100644 --- a/mhcflurry/class1_affinity_predictor.py +++ b/mhcflurry/class1_affinity_predictor.py @@ -1032,8 +1032,20 @@ class Class1AffinityPredictor(object): logging.warning(msg) if throw: raise ValueError(msg) - mask = df.supported_peptide_length - if mask.sum() > 0: + mask = df.supported_peptide_length & ( + ~df.normalized_allele.isin(unsupported_alleles)) + if mask is None or mask.all(): + # Common case optimization + allele_encoding = AlleleEncoding( + df.normalized_allele, + borrow_from=master_allele_encoding) + for (i, model) in enumerate(self.class1_pan_allele_models): + predictions_array[:, i] = ( + model.predict( + peptides, + allele_encoding=allele_encoding, + **model_kwargs)) + elif mask.sum() > 0: masked_allele_encoding = AlleleEncoding( df.loc[mask].normalized_allele, borrow_from=master_allele_encoding) diff --git a/mhcflurry/train_pan_allele_models_command.py b/mhcflurry/train_pan_allele_models_command.py index 2c16f263842c102f38664c3f173c3bb401e9ed8a..88ca3e2a2dd1dbe91dbc42c223c36965d3576e10 100644 --- a/mhcflurry/train_pan_allele_models_command.py +++ b/mhcflurry/train_pan_allele_models_command.py @@ -417,7 +417,7 @@ def train_model( save_to): import keras.backend as K - K.clear_session() + K.clear_session() # release memory df = GLOBAL_DATA["train_data"] folds_df = GLOBAL_DATA["folds_df"]