diff --git a/downloads-generation/models_class1_allele_specific_single/README.md b/downloads-generation/models_class1_allele_specific_single/README.md index 58b6880f496aadb9e36f5ab6fdd434ae2feee9f7..12046a005e62d761d5cbccf7b6f5835d7fc48c3b 100644 --- a/downloads-generation/models_class1_allele_specific_single/README.md +++ b/downloads-generation/models_class1_allele_specific_single/README.md @@ -11,10 +11,13 @@ To generate this download we run: ``` # If you are running dask distributed using our kubernetes config, you can use the DASK_IP one liner below. # Otherwise, just set it to the IP of the dask scheduler. -DASK_IP=$(kubectl get service | grep daskd-scheduler | tr -s ' ' | cut -d ' ' -f 3) ./GENERATE.sh \ - --joblib-num-jobs 100 \ - --joblib-pre-dispatch all \ --cv-folds-per-task 10 \ - --dask-scheduler $DASK_IP:8786 + --backend kubernetes \ + --storage-prefix gs://kubeface \ + --worker-image hammerlab/mhcflurry:latest \ + --kubernetes-task-resources-memory-mb 10000 \ + --worker-path-prefix venv-py3/bin \ + --max-simultaneous-tasks 200 \ + ``` diff --git a/downloads-generation/models_class1_allele_specific_single/models.py b/downloads-generation/models_class1_allele_specific_single/models.py index 6375cd4510bfebadd4df529a6884c1eb1632f162..30f8e3d5e0a5cbdc3426147d118d3fd22edae304 100644 --- a/downloads-generation/models_class1_allele_specific_single/models.py +++ b/downloads-generation/models_class1_allele_specific_single/models.py @@ -3,13 +3,12 @@ from mhcflurry.class1_allele_specific.train import HYPERPARAMETER_DEFAULTS import json models = HYPERPARAMETER_DEFAULTS.models_grid( - #impute=[False, True], - impute=[False], + impute=[False, True], activation=["tanh"], layer_sizes=[[12], [64], [128]], embedding_output_dim=[8, 32, 64], dropout_probability=[0, .1, .25], - # fraction_negative=[0, .1, .2], + fraction_negative=[0, .1, .2], n_training_epochs=[250]) sys.stderr.write("Models: %d\n" % len(models))