diff --git a/docs/commandline_tutorial.rst b/docs/commandline_tutorial.rst index bdec4241e9a3d7c4856f5e5a5d765f0812b1870d..684438568b4855a05358d9e63794aac7a30341e1 100644 --- a/docs/commandline_tutorial.rst +++ b/docs/commandline_tutorial.rst @@ -26,21 +26,12 @@ It defaults to using the pre-trained models you downloaded above but this can be customized with the ``--models`` argument. See ``mhcflurry-predict -h`` for details. -.. code:: shell - - $ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ - allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high - HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508 - HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844 - HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413 - HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867 - HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437 - HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705 +.. command-output:: mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ The predictions returned are affinities (KD) in nM. The ``prediction_low`` and ``prediction_high`` fields give the 5-95 percentile predictions across the models in the ensemble. The predictions above were generated with MHCflurry -0.9.2. +|version|. Your exact predictions may vary slightly from these (up to about 1 nM) depending on the Keras backend in use and other numerical details. Different versions of diff --git a/docs/conf.py b/docs/conf.py index d571185d73f1a31e03376eacdb17a57ee8264bf9..c3580079eb2cb23c110a407235930cb6035945ea 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -39,6 +39,7 @@ extensions = [ 'sphinx.ext.githubpages', 'numpydoc', 'sphinx_autorun', + 'sphinxcontrib.programoutput', ] # Add any paths that contain templates here, relative to this directory. diff --git a/docs/package_readme/readme.generated.rst b/docs/package_readme/readme.generated.rst index c52c0fced8e8b4b4cf8f33a134fb5be9b6e7978d..1d4381cdff3cb4906497a920f94cdef4b180b00f 100644 --- a/docs/package_readme/readme.generated.rst +++ b/docs/package_readme/readme.generated.rst @@ -5,9 +5,11 @@ :target: https://coveralls.io/github/hammerlab/mhcflurry mhcflurry -========= +=================== -Open source neural network models for peptide-MHC binding affinity predictionMHCflurry is a Python package for peptide/MHC I binding affinity +Open source neural network models for peptide-MHC binding affinity prediction + +MHCflurry is a Python package for peptide/MHC I binding affinity prediction. It provides competitive accuracy with a fast, documented, open source implementation. @@ -90,18 +92,20 @@ downloaded above but this can be customized with the "--models" argument. See "mhcflurry-predict -h" for details. $ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ - allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high - HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508 - HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844 - HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413 - HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867 - HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437 - HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705 + 2017-12-21 13:15:45.075649: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA + Using TensorFlow backend. + allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high,mhcflurry_prediction_percentile + HLA-A0201,SIINFEKL,4899.047843425702,2767.7636539507857,7269.683642935029,6.509787499999997 + HLA-A0201,SIINFEKD,21050.420242970613,16834.65859138968,24129.046091695887,34.297175 + HLA-A0201,SIINFEKQ,21048.47265780004,16736.561254929948,24111.013114442652,34.297175 + HLA-A0301,SIINFEKL,28227.298909150148,24826.30790978725,32714.28597399942,33.95121249999998 + HLA-A0301,SIINFEKD,30816.721218383507,27685.50847082019,36037.32590461623,41.22577499999998 + HLA-A0301,SIINFEKQ,24183.021046496786,19346.154182011513,32263.71247531383,24.81096249999999 The predictions returned are affinities (KD) in nM. The "prediction_low" and "prediction_high" fields give the 5-95 percentile predictions across the models in the ensemble. The predictions above -were generated with MHCflurry 0.9.2. +were generated with MHCflurry 1.0.0. Your exact predictions may vary slightly from these (up to about 1 nM) depending on the Keras backend in use and other numerical details. diff --git a/docs/package_readme/readme_header.rst b/docs/package_readme/readme_header.rst index b44a6f0792ab08138b5bf3d4c065c83a46de2bf2..d4cdf9d7824ac23b964ec4a2f4cad528ce124c97 100644 --- a/docs/package_readme/readme_header.rst +++ b/docs/package_readme/readme_header.rst @@ -5,6 +5,7 @@ :target: https://coveralls.io/github/hammerlab/mhcflurry mhcflurry -========= +=================== + +Open source neural network models for peptide-MHC binding affinity prediction -Open source neural network models for peptide-MHC binding affinity prediction \ No newline at end of file diff --git a/docs/requirements.txt b/docs/requirements.txt index 84dc89d17ff252e2672abed0f5a524db790beac9..27dde4233d48923904073b43a6fca6106d68df22 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -1,3 +1,4 @@ sphinx-autorun +sphinxcontrib-programoutput sphinx numpydoc