diff --git a/README.md b/README.md index 6ce73bd743804d70f0d2393b490193780123fdce..0af83baad4a87a4613fafb191875de8f98753ead 100644 --- a/README.md +++ b/README.md @@ -31,7 +31,24 @@ From a checkout you can run the unit tests with: nosetests . ``` -## Making predictions +## Making predictions from the command-line + +```shell +$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ +Predicting for 2 alleles and 3 peptides = 6 predictions +allele,peptide,mhcflurry_prediction +HLA-A0201,SIINFEKL,10672.34765625 +HLA-A0201,SIINFEKD,26042.716796875 +HLA-A0201,SIINFEKQ,26375.794921875 +HLA-A0301,SIINFEKL,25532.703125 +HLA-A0301,SIINFEKD,24997.876953125 +HLA-A0301,SIINFEKQ,28262.828125 +``` + +You can also specify the input and output as CSV files. Run `mhcflurry-predict -h` for details. + + +## Making predictions from Python ```python from mhcflurry import predict diff --git a/mhcflurry/predict_command.py b/mhcflurry/predict_command.py index dec8be97fe312e24834fd556fa40eea0794ff0e3..4a010402ecb357d296a574c2c89a93ec116051ad 100644 --- a/mhcflurry/predict_command.py +++ b/mhcflurry/predict_command.py @@ -137,7 +137,6 @@ def run(argv=sys.argv[1:]): predictions = {} # allele -> peptide -> value for (allele, sub_df) in df.groupby(args.allele_column): - print(sub_df) logging.info("Running %d predictions for allele %s" % ( len(sub_df), allele)) model = class1_allele_specific_loader.from_allele_name(allele)