diff --git a/mhcflurry/class1_affinity_predictor.py b/mhcflurry/class1_affinity_predictor.py index 1bbefd41561cac5df54208050c5309f12ad90047..fa2023eb9e8f661b3d31b78ce25f735bbb2aa505 100644 --- a/mhcflurry/class1_affinity_predictor.py +++ b/mhcflurry/class1_affinity_predictor.py @@ -933,7 +933,7 @@ class Class1AffinityPredictor(object): encoded_peptides = EncodableSequences.create(peptides) for (i, allele) in enumerate(alleles): - predictions = self.predict(peptides, allele=allele) + predictions = self.predict(encoded_peptides, allele=allele) transform = PercentRankTransform() transform.fit(predictions, bins=bins) self.allele_to_percent_rank_transform[allele] = transform diff --git a/mhcflurry/train_allele_specific_models_command.py b/mhcflurry/train_allele_specific_models_command.py index 87fe6b019f2b3add80615fee68671aa50051904e..3d72b32a1a50ea5df3b0abf4533ce74dd05f394a 100644 --- a/mhcflurry/train_allele_specific_models_command.py +++ b/mhcflurry/train_allele_specific_models_command.py @@ -9,6 +9,7 @@ import time import traceback from multiprocessing import Pool from functools import partial +from pprint import pprint import pandas import yaml @@ -363,7 +364,7 @@ def train_model( # For the first model for the first allele, print the architecture. print("*** HYPERPARAMETER SET %d***" % (hyperparameter_set_num + 1)) - print(hyperparameters) + pprint(hyperparameters) print("*** ARCHITECTURE FOR HYPERPARAMETER SET %d***" % (hyperparameter_set_num + 1)) model.network(borrow=True).summary()