From 1ca484c762614998d2571dc04f4ffd2ac0d94938 Mon Sep 17 00:00:00 2001 From: Tim O'Donnell <timodonnell@gmail.com> Date: Sun, 26 Nov 2017 11:09:25 -0500 Subject: [PATCH] more efficient peptide encoding in calibrate_percentile_ranks --- .../class1_affinity_prediction/class1_affinity_predictor.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/mhcflurry/class1_affinity_prediction/class1_affinity_predictor.py b/mhcflurry/class1_affinity_prediction/class1_affinity_predictor.py index e61d46f7..5d6df8c6 100644 --- a/mhcflurry/class1_affinity_prediction/class1_affinity_predictor.py +++ b/mhcflurry/class1_affinity_prediction/class1_affinity_predictor.py @@ -6,6 +6,7 @@ from os.path import join, exists from six import string_types import logging import warnings +import sys import numpy import pandas @@ -532,12 +533,14 @@ class Class1AffinityPredictor(object): else: def msg(s): print(s) + sys.stdout.flush() + encoded_peptides = EncodableSequences.create(peptides) for (i, allele) in enumerate(alleles): msg("Calibrating percentile ranks for allele %03d/%03d: %s" % ( i + 1, len(alleles), allele)) start = time.time() - predictions = self.predict(peptides, allele=allele) + predictions = self.predict(encoded_peptides, allele=allele) msg("Generated %d predictions in %0.2f sec." % ( len(predictions), time.time() - start)) transform = PercentRankTransform() -- GitLab