diff --git a/README.md b/README.md index 66a82471dccad9805df09407c2a351a63654a0e6..b80b1629d49040dede35a05fb8d2a6689918d7ac 100644 --- a/README.md +++ b/README.md @@ -62,17 +62,21 @@ You may also needs to `pip install theano`. ```shell $ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high -HLA-A0201,SIINFEKL,6029.079749556217,4474.10333152741,7771.2922076773575 -HLA-A0201,SIINFEKD,18950.310303704624,15317.127851792027,22490.05728778504 -HLA-A0201,SIINFEKQ,18776.978315260818,14899.359763218705,22314.737180384865 -HLA-A0301,SIINFEKL,25589.66470369661,22962.4956808368,29395.86949262485 -HLA-A0301,SIINFEKD,25753.619337400796,22851.89399578629,29347.659901990868 -HLA-A0301,SIINFEKQ,26870.51318688641,24198.39885651102,30364.15208364084 +HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508 +HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844 +HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413 +HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867 +HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437 +HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705 ``` The predictions returned are affinities (KD) in nM. The `prediction_low` and -`prediction_high` fields give the 5-95 percentile predictions across the models -in the ensemble. +`prediction_high` fields give the 5-95 percentile predictions across the models +in the ensemble. The predictions above were generated with MHCflurry 0.9.2. +Your exact predictions may vary slightly from these (up to about 1 nM) +depending on the Keras backend in use and other numerical details even if you +match the MHCflurry version, whereas different versions of MHCflurry give +results that are considerably different from these. You can also specify the input and output as CSV files. Run `mhcflurry-predict -h` for details.